基础医学与临床 ›› 2023, Vol. 43 ›› Issue (4): 524-531.doi: 10.16352/j.issn.1001-6325.2023.04.0524
张强, 宿文辉*
收稿日期:
2022-08-05
修回日期:
2022-12-20
出版日期:
2023-04-05
发布日期:
2023-04-03
通讯作者:
*whsu@cmu.edu.cn
基金资助:
ZHANG Qiang, SU Wenhui*
Received:
2022-08-05
Revised:
2022-12-20
Online:
2023-04-05
Published:
2023-04-03
Contact:
*whsu@cmu.edu.cn
摘要: N6-甲基腺苷(m6A)核酸修饰是近10年来研究较多的一类表观修饰,RNA通过经典m6A修饰蛋白“Writers”(METTL3/14/WTAP等)、m6A去修饰蛋白“Erasers”(FTO和ALKBH5)和m6A识别蛋白“Readers”(YTHDC1/2、YTHDF1/2/3等)组成的协同调节体系进行转录后核酸m6A修饰、去修饰和识别结合,进而调控转录本下游命运。精子发生是雄性哺乳动物性成熟和维持生育能力的重要过程,涉及生精上皮支持细胞、间质细胞和精原细胞等增殖分化和维持生精微环境过程。多项研究表明m6A调节体系参与哺乳动物精子发生进程,异常的m6A修饰水平和m6A调节体系失衡均会导致睾丸发育异常、精子发生异常和雄性不育。本文综述了精子发生过程中m6A修饰相关酶的作用,深入分析m6A差异修饰转录本之于正常精子发生的作用,对认知哺乳动物精子发生和解析临床生精障碍的分子机制具有重要意义。
中图分类号:
张强, 宿文辉. 生殖基础研究 RNA N6-甲基腺苷(m6A)修饰相关酶在哺乳动物精子发生中的研究进展[J]. 基础医学与临床, 2023, 43(4): 524-531.
ZHANG Qiang, SU Wenhui. Advances in research on RNA N-6-methyladenosine(m6A) modification related enzymes in mammalian spermatogenesis[J]. Basic & Clinical Medicine, 2023, 43(4): 524-531.
[1] | Cole LA. Human male spermatogenesis[M]//Cole LA. Biology of life. Online; Academic Press, 2016: 135-141. |
[2] | Roundtree IA, Evans ME, Pan T, et al. Dynamic rna modifications in gene expression regulation[J]. Cell, 2017, 169: 1187-1200. |
[3] | Boccaletto P, Baginski B. Modomics: An operational guide to the use of the rna modification pathways database[J]. Methods Mol Biol, 2021, 2284: 481-505. |
[4] | Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger rna from novikoff hepatoma cells[J]. Proc Natl Acad Sci U S A, 1974, 71: 3971-3975. |
[5] | Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear rna is a major substrate of the obesity-associated fto[J]. Nat Chem Biol, 2011, 7: 885-887. |
[6] | Lin Z, Hsu PJ, Xing X, et al. Mettl3-/mettl14-mediated mrna n(6)-methyladenosine modulates murine spermatogenesis[J]. Cell Res, 2017, 27: 1216-1230. |
[7] | Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of mettl3 and mettl14 methyltransferases[J]. Mol Cell, 2016, 63: 306-317. |
[8] | Xiao W, Adhikari S, Dahal U, et al. Nuclear m6a reader ythdc1 regulates mrna splicing[J]. Mol Cell, 2016, 61: 507-519. |
[9] | Ping XL, Sun BF, Wang L, et al. Mammalian wtap is a regulatory subunit of the rna n6-methyladenosine methyltransferase[J]. Cell Research, 2014, 24: 177-189. |
[10] | Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mrna methylation reveals enrichment in 3' utrs and near stop codons[J]. Cell, 2012, 149: 1635-1646. |
[11] | Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6a rna methylomes revealed by m6a-seq[J]. Nature, 2012, 485: 201-206. |
[12] | Yue Y, Liu J, Cui X, et al. Virma mediates preferential m(6)a mrna methylation in 3'utr and near stop codon and associates with alternative polyadenylation[J]. Cell Discov, 2018, 4: 10. |
[13] | Ruan H, Yang F, Deng L, et al. Human m(6)a-mrna and lncrna epitranscriptomic microarray reveal function of rna methylation in hemoglobin h-constant spring disease[J]. Sci Rep, 2021, 11: 20478. |
[14] | Patil DP, Chen CK, Pickering BF, et al. M(6)a rna methylation promotes xist-mediated transcriptional repression[J]. Nature, 2016, 537: 369-373. |
[15] | Zheng GQ, Dahl JA, Niu YM, et al. Alkbh5 is a mammalian rna demethylase that impacts rna metabolism and mouse fertility[J]. Mol Cell, 2013, 49: 18-29. |
[16] | Mauer J, Sindelar M, Despic V, et al. Fto controls reversible m(6)am rna methylation during snrna biogenesis[J]. Nat Chem Biol, 2019, 15: 340-347. |
[17] | Roundtree IA, Luo GZ, Zhang Z, et al. Ythdc1 mediates nuclear export of n(6)-methyladenosine methylated mrnas[J]. Elife, 2017, 6. e31311.doi: 10.7554/eLife.31311. |
[18] | Hsu PJ, Zhu Y, Ma H, et al. Ythdc2 is an n(6)-methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Res, 2017, 27: 1115-1127. |
[19] | Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine modulates messenger rna translation efficiency[J]. Cell, 2015, 161: 1388-1399. |
[20] | Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger rna stability[J]. Nature, 2014, 505: 117-120. |
[21] | Shi H, Wang X, Lu Z, et al. Ythdf3 facilitates translation and decay of n(6)-methyladenosine-modified rna[J]. Cell Res, 2017, 27: 315-328. |
[22] | Li A, Chen YS, Ping XL, et al. Cytoplasmic m(6)a reader ythdf3 promotes mrna translation[J]. Cell Res, 2017, 27: 444-447. |
[23] | Huang H, Weng H, Sun W, et al. Recognition of rna n(6)-methyladenosine by igf2bp proteins enhances mrna stability and translation[J]. Nat Cell Biol, 2018, 20: 285-295. |
[24] | Meyer KD, Patil DP, Zhou J, et al. 5' utr m(6)a promotes cap-independent translation[J]. Cell, 2015, 163: 999-1010. |
[25] | Alarcon CR, Goodarzi H, Lee H, et al. Hnrnpa2b1 is a mediator of m(6)a-dependent nuclear rna processing events[J]. Cell, 2015, 162: 1299-1308. |
[26] | Liu N, Dai Q, Zheng G, et al. N(6)-methyladenosine-dependent rna structural switches regulate rna-protein interactions[J]. Nature, 2015, 518: 560-564. |
[27] | Liu N, Zhou KI, Parisien M, et al. N6-methyladenosine alters rna structure to regulate binding of a low-complexity protein[J]. Nucleic Acids Res, 2017, 45: 6051-6063. |
[28] | Fu Y, Dominissini D, Rechavi G, et al. Gene expression regulation mediated through reversible m6a rna methylation[J]. Nat Rev Genet, 2014, 15: 293-306. |
[29] | Bi Z, Liu Y, Zhao Y, et al. A dynamic reversible rna n(6) -methyladenosine modification: Current status and perspectives[J]. J Cell Physiol, 2019, 234: 7948-7956. |
[30] | Cao G, Li HB, Yin Z, et al. Recent advances in dynamic m6a rna modification[J]. Open Biol, 2016, 6: 160003. |
[31] | Shi H, Wei J, He C. Where, when, and how: Context-dependent functions of rna methylation writers, readers, and erasers[J]. Mol Cell, 2019, 74: 640-650. |
[32] | Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mrna methylation[J]. Nat Rev Mol Cell Biol, 2019, 20: 608-624. |
[33] | Adhikari S, Xiao W, Zhao YL, et al. M(6)a: Signaling for mrna splicing[J]. RNA Biol, 2016, 13: 756-759. |
[34] | Lesbirel S, Wilson SA. The m(6)amethylase complex and mrna export[J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862: 319-328. |
[35] | Frye M, Harada BT, Behm M, et al. Rna modifications modulate gene expression during development[J]. Science, 2018, 361: 1346-1349. |
[36] | Lukassen S, Bosch E, Ekici AB, et al. Characterization of germ cell differentiation in the male mouse through single-cell rna sequencing[J]. Sci Rep, 2018, 8: 6521. |
[37] | Kalucka J, de Rooij L, Goveia J, et al. Single-cell transcriptome atlas of murine endothelial cells[J]. Cell, 2020, 180: 764-779 e720. |
[38] | Yu XW, Li TT, Du XM, et al. Single-cell rna sequencing reveals atlas of dairy goat testis cells[J]. Zool Res, 2021, 42: 401-405. |
[39] | Wu Y, Guo T, Li J, et al. The transcriptional cell atlas of testis development in sheep at pre-sexual maturity[J]. Curr Issues Mol Biol, 2022, 44: 483-497. |
[40] | Yang H, Ma J, Wan Z, et al. Characterization of sheep spermatogenesis through single-cell rna sequencing[J]. FASEB J, 2021, 35: e21187. |
[41] | Zhang L, Li F, Lei P, et al. Single-cell rna-sequencing reveals the dynamic process and novel markers in porcine spermatogenesis[J]. J Anim Sci Biotechnol, 2021, 12: 122. |
[42] | Zhang L, Guo M, Liu Z, et al. Single-cell rna-seq analysis of testicular somatic cell development in pigs[J]. J Genet Genomics, 2022,49:1016-1028. |
[43] | Lau X, Munusamy P, Ng MJ, et al. Single-cell rna sequencing of the cynomolgus macaque testis reveals conserved transcriptional profiles during mammalian spermatogenesis[J]. Dev Cell, 2020, 54: 548-566 e547. |
[44] | Wang M, Liu X, Chang G, et al. Single-cell rna sequencing analysis reveals sequential cell fate transition during human spermatogenesis[J]. Cell Stem Cell, 2018, 23: 599-614 e594. |
[45] | Sun X, Zhang J, Jia Y, et al. Characterization of m6a in mouse ovary and testis[J]. Clin Transl Med, 2020, 10: e141. |
[46] | Zhao X, Lin Z, Fan Y, et al. Ythdf2 is essential for spermatogenesis and fertility by mediating a wave of transcriptional transition in spermatogenic cells[J]. Acta Biochim Biophys Sin (Shanghai), 2021, 53: 1702-1712. |
[47] | Chen Y, Wang J, Xu D, et al. M(6)a mrna methylation regulates testosterone synthesis through modulating autophagy in leydig cells[J]. Autophagy, 2021, 17: 457-475. |
[48] | Liu SH, Ma XY, Yue TT, et al. Transcriptome-wide m6a analysis provides novel insights into testicular development and spermatogenesis in xia-nan cattle[J]. Front Cell Dev Biol, 2021, 9: 791221. |
[49] | Liu Z, Chen X, Zhang P, et al. Transcriptome-wide dynamics of m(6)a mrna methylation during porcine spermatogenesis[J]. Genomics Proteomics Bioinformatics, 2021, S1672-0229(21)00181-9. doi: 10.1016/j.gpb.2021.08.006. |
[50] | Zhao TX, Wang JK, Shen LJ, et al. Increased m6a rna modification is related to the inhibition of the nrf2-mediated antioxidant response in di-(2-ethylhexyl) phthalate-induced prepubertal testicular injury[J]. Environ Pollut, 2020, 259: 113911. |
[51] | Soumillon M, Necsulea A, Weier M, et al. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis[J]. Cell Rep, 2013, 3: 2179-2190. |
[52] | Yu Y, Fuscoe JC, Zhao C, et al. A rat rna-seq transcriptomic bodymap across 11 organs and 4 developmental stages[J]. Nat Commun, 2014, 5: 3230. |
[53] | Zimmermann C, Stevant I, Borel C, et al. Research resource: The dynamic transcriptional profile of sertoli cells during the progression of spermatogenesis[J]. Mol Endocrinol, 2015, 29: 627-642. |
[54] | Schwartz S, Agarwala Sudeep D, Mumbach Maxwell R, et al. High-resolution mapping reveals a conserved, widespread, dynamic mrna methylation program in yeast meiosis[J]. Cell, 2013, 155: 1409-1421. |
[55] | Xu K, Yang Y, Feng GH, et al. Mettl3-mediated m(6)a regulates spermatogonial differentiation and meiosis initiation[J]. Cell Res, 2017, 27: 1100-1114. |
[56] | Lasman L, Krupalnik V, Viukov S, et al. Context-dependent functional compensation between ythdf m(6)a reader proteins[J]. Genes Dev, 2020, 34: 1373-1391. |
[57] | Jia GX, Lin Z, Yan RG, et al. Wtap function in sertoli cells is essential for sustaining the spermatogonial stem cell niche[J]. Stem Cell Reports, 2020, 15: 968-982. |
[58] | Huang Y, Yan J, Li Q, et al. Meclofenamic acid selectively inhibits fto demethylation of m6a over alkbh5[J]. Nucleic Acids Res, 2015, 43: 373-384. |
[59] | Huang T, Guo J, Lv Y, et al. Meclofenamic acid represses spermatogonial proliferation through modulating m(6)a rna modification[J]. J Anim Sci Biotechnol, 2019, 10: 63. |
[60] | Tang C, Klukovich R, Peng H, et al. Alkbh5-dependent m6a demethylation controls splicing and stability of long 3′-utr mrnas in male germ cells[J]. Proc Natl Acad Sci U S A, 2018, 115: E325-E333. |
[61] | Hong S, Shen X, Luo C, et al. Comparative analysis of the testes from wild-type and alkbh5-knockout mice using single-cell rna sequencing[J]. G3 (Bethesda), 2022, 12:jkac130. doi: 10.1093/g3journal/jkac130 |
[62] | Cheng CY, Mruk DD. The blood-testis barrier and its implications for male contraception[J]. Pharmacol Rev, 2012, 64: 16-64. |
[63] | Kasowitz SD, Ma J, Anderson SJ, et al. Nuclear m6a reader ythdc1 regulates alternative polyadenylation and splicing during mouse oocyte development[J]. PLoS Genet, 2018, 14: e1007412. |
[64] | Roundtree IA, He C. Nuclear m6a reader ythdc1 regulates mrna splicing[J]. Trends Genet, 2016, 32: 320-321. |
[65] | Wojtas MN, Pandey RR, Mendel M, et al. Regulation of m(6)a transcripts by the 3′-->5′ rna helicase ythdc2 is essential for a successful meiotic program in the mammalian germline[J]. Mol Cell, 2017, 68: 374-387 e312. |
[66] | Jain D, Puno MR, Meydan C, et al. Ketu mutant mice uncover an essential meiotic function for the ancient rna helicase ythdc2[J]. Elife, 2018, 7:e30919. doi: 10.7554/eLife.30919 |
[67] | Bai G, Zhai X, Liu L, et al. The molecular charac-teristics in different procedures of spermatogenesis[J]. Gene, 2022, 826: 146405. |
[68] | Tang Z, Li C, Kang B, et al. Gepia: A web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45: W98-W102. |
[69] | Yang Y, Huang W, Huang JT, et al. Increased n6-methyladenosine in human sperm rna as a risk factor for asthenozoospermia[J]. Sci Rep, 2016, 6: 24345. |
[70] | Glazer CH, Bonde JP, Giwercman A, et al. Risk of diabetes according to male factor infertility: A register-based cohort study[J]. Hum Reprod, 2017, 32: 1474-1481. |
[71] | Chen X, Lin Q, Wen J, et al. Whole genome bisulfite sequencing of human spermatozoa reveals differentially methylated patterns from type 2 diabetic patients[J]. J Diabetes Investig, 2020, 11: 856-864. |
[72] | Landfors M, Nakken S, Fusser M, et al. Sequencing of fto and alkbh5 in men undergoing infertility work-up identifies an infertility-associated variant and two missense mutations[J]. Fertil Steril, 2016, 105: 1170-1179.e1175. |
[1] | 柳俊, 邹定峰, 缪时英, 宋伟, 李凯. 基因Cdca2敲除对小鼠精子发生和生育力无明显影响[J]. 基础医学与临床, 2023, 43(5): 717-723. |
[2] | 钟琳, 钟洪莉, 代宇婕, 张庆华. 敲低热休克转录因子5(Hsf5)对小鼠睾丸间质细胞和支持细胞中热休克家族的影响[J]. 基础医学与临床, 2023, 43(4): 626-631. |
[3] | 汤洁琳, 柳俊, 邹定峰, 缪时英, 宋伟, 李凯. 敲除基因Pabpc6对雄性小鼠精子发生的影响[J]. 基础医学与临床, 2023, 43(4): 560-567. |
[4] | 蒋术一, 宿文辉. Ⅳ型胶原蛋白NC1片段在精子发生及血睾屏障中作用的研究进展[J]. 基础医学与临床, 2023, 43(4): 532-537. |
[5] | 钟洪莉, 肖城良, 史祥睿, 代宇婕, 刘威, 张庆华. 精子发生调控因子重组人HSF5的原核表达、活性检测与结构预测[J]. 基础医学与临床, 2021, 41(9): 1323-1328. |
[6] | 李凯, 邙新雨, 邹定峰, 李梦真, 缪时英, 王琳芳, 宋伟. 全转录组测序分析精子发生中RNA结合蛋白质的动态表达[J]. 基础医学与临床, 2021, 41(6): 825-830. |
[7] | 高峰, 张士更, 张楠, 文甲明, 虞旗旗, 黄亚胜. Cajal间质细胞数量在反复膀胱炎大鼠膀胱中增加[J]. 基础医学与临床, 2020, 40(9): 1237-1241. |
[8] | 李雅惠, 李凯, 罗艳云, 李梦真, 邙新雨, 宋伟, 杨涛. 小鼠生精细胞特异表达载体AAV-Dazl-RFP-Flag的构建及表达验证[J]. 基础医学与临床, 2020, 40(6): 753-758. |
[9] | 陈民佳, 杜娟, 袁丹凤, 张蜀, 黄宏, 朱方强. 姜黄素抑制TGF-β1诱导的人肾小管上皮细胞系表型转化[J]. 基础医学与临床, 2020, 40(1): 48-53. |
[10] | 钟顺顺 李凯 杨阳 缪时英 王琳芳 宋伟. 利用CRISPR /CAS9技术构建QKI敲除GC1-spg细胞株及其生物学功能检测[J]. 基础医学与临床, 2018, 38(5): 589-593. |
[11] | 王天琪 苑丽华 撒元红 姜华颖 肖继梅 孙振高. 抗苗勒氏管激素与男性生殖内分泌相关疾病研究进展[J]. 基础医学与临床, 2018, 38(3): 405-408. |
[12] | 张晓艳 李炳蔚 刘明明 尚飞 刘淑英 盛有明 李宏伟 修瑞娟. 高脂饮食诱导小鼠血糖增高损伤睾丸微血管功能[J]. 基础医学与临床, 2018, 38(2): 213-217. |
[13] | 何红云 邓仪昊 杨新文 杨开明. 葛根素减轻乙醇导致大鼠生精细胞的凋亡[J]. 基础医学与临床, 2009, 29(12): 1291-1295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备07012236号
网站版权 © 《基础医学与临床》编辑部