[1]Klinhom-On N, Seubwai W, Sawanyawisuth K, et al. FOXM1c is the predominant FOXM1 isoform expressed in cholangiocarcinoma that associated with metastatic poten-tial and poor prognosis of patients[J]. Heliyon, 2021, 7: e06846.doi: 10.1016/j.heliyon.2021.e06846. [2]Shim JK, Lim SH, Jeong JH, et al. A lignan from Alnus japonica inhibits glioblastoma tumorspheres by suppression of FOXM1[J]. Sci Rep, 2022, 12: 13990.doi: 10.1038/s41598-022-18185-w. [3]Patel AJ, Wan YW, Al-Ouran R, et al. Molecular profiling predicts meningioma recurrence and reveals loss of DREAM complex repression in aggressive tumors[J]. Proc Natl Acad Sci U S A, 2019, 116: 21715-21726. [4]Yi L, Wang H, Li W, et al. The FOXM1/RNF26/p57 axis regulates the cell cycle to promote the aggressiveness of bladder cancer[J]. Cell Death Dis, 2021, 12: 944.doi: 10.1038/s41419-021-04260-z. [5]Uxa S, Castillo-Binder P, Kohler R, et al. Ki-67 gene expression[J]. Cell Death Differ, 2021, 28: 3357-3370. [6]Fu J, Peng J, and Tu G Knockdown MTDH inhibits glioma proliferation and migration and promotes apoptosis by downregulating MYBL2[J]. Mediators Inflamm, 2022, 2022: 1706787.doi: 10.1155/2022/1706787. [7]Zhao P, Li T, Wang Y, et al. LncRNA MYCNOS promotes glioblastoma cell proliferation by regulating miR-216b/FOXM1 axis[J]. Metab Brain Dis, 2021, 36: 1185-1189. [8]Tao W, Zhang A, Zhai K, et al. SATB2 drives glioblastoma growth by recruiting CBP to promote FOXM1 expres-sion in glioma stem cells[J]. EMBO Mol Med, 2020, 12: e12291.doi: 10.15252/emmm.202012291. [9]Sher G, Masoodi T, Patil K, et al. Dysregulated FOXM1 signaling in the regulation of cancer stem cells[J]. Semin Cancer Biol, 2022, 86: 107-121. [10]Zhang N, Wei P, Gong A, et al. FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis[J]. Cancer Cell, 2011, 20: 427-42. [11]Liu W, Shen D, Ju L, et al. MYBL2 promotes prolifera-tion and metastasis of bladder cancer through transactivation of CDCA3[J]. Oncogene, 2022, 41: 4606-4617. [12]Chen L, Xu Z, Li Q, et al. USP28 facilitates pancreatic cancer progression through activation of Wnt/β-catenin pathway via stabilising FOXM1[J]. Cell Death Dis, 2021, 12: 887.doi: 10.1038/s41419-021-04163-z. [13]Hashemi M, Etemad S, Rezaei S, et al. Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: revisiting molecular interactions[J]. Biomed Pharmacother, 2023, 158: 114204.doi: 10.1016/j.biopha.2022.114204. [14]Xu K, Zhang K, Ma J, et al. CKAP4-mediated activation of FOXM1 via phosphorylation pathways regulates malig-nant behavior of glioblastoma cells[J]. Transl Oncol, 2023, 29: 101628.doi: 10.1016/j.tranon.2023.101628. [15]Kimura H, Sada R, Takada N, et al. The Dickkopf1 and FOXM1 positive feedback loop promotes tumor growth in pancreatic and esophageal cancers[J]. Oncogene, 2021, 40: 4486-4502. [16]Fu Y, Bai C, Wang S, et al. AKT1 phosphorylates RBM17 to promote Sox2 transcription by modulating alternative splicing of FOXM1 to enhance cancer stem cell properties in colorectal cancer cells[J]. FASEB J, 2023, 37: e22707.doi: 10.1096/fj.202201255R. [17]Zhang X, Lv QL, Huang YT, et al. Akt/FoxM1 signaling pathway-mediated upregulation of MYBL2 promotes progression of human glioma[J]. J Exp Clin Cancer Res, 2017, 36: 105.doi: 10.1186/s13046-017-0573-6. [18]Levine AJ p53: 800 million years of evolution and 40 years of discovery[J]. Nat Rev Cancer, 2020, 20: 471-480. [19]Kennedy MC, Lowe SW. Mutant p53: it's not all one and the same[J]. Cell Death Differ, 2022, 29: 983-987. [20]Kumari R, Hummerich H, Shen X, et al. Simultaneous expression of MMB-FOXM1 complex components enables efficient bypass of senescence[J]. Sci Rep, 2021, 11: 21506.doi: 10.1038/s41598-021-01012-z. [21]Jia J, Cui Y, Tan Z, et al. Transcriptional factor FoxM1-activated microRNA-335-3p maintains the self-renewal of neural stem cells by inhibiting p53 signaling pathway via Fmr1[J]. Stem Cell Res Ther, 2021, 12: 169.doi: 10.1186/s13287-021-02191-2. [22]Tanaka N, Zhao M, Tang L, et al. Gain-of-function mutant p53 promotes the oncogenic potential of head and neck squamous cell carcinoma cells by targeting the transcription factors FOXO3a and FOXM1[J]. Oncogene, 2018, 37: 1279-1292. [23]Zhang W, Qian W, Gu J, et al. Mutant p53 driven-LINC00857, a protein scaffold between FOXM1 and deubiquitinase OTUB1, promotes the metastasis of pancreatic cancer[J]. Cancer Lett, 2023, 552: 215976.doi: 10.1016/j.canlet.2022.215976. [24]Bollu LR, Shepherd J, Zhao D, et al. Mutant P53 induces MELK expression by release of wild-type P53-dependent suppression of FOXM1[J]. NPJ Breast Cancer, 2020, 6: 2.doi: 10.1038/s41523-019-0143-5. [25]黄博, 程苾恒, 解美婷, 等. FOXM1促进子宫内膜癌细胞系HEC-1B增殖、迁移和侵袭[J]. 基础医学与临床, 2021, 41: 1780-1785. |