基础医学与临床 ›› 2023, Vol. 43 ›› Issue (1): 21-29.doi: 10.16352/j.issn.1001-6325.2023.01.0021
• 特邀专题:成体干细胞基础创新与临床转化 • 上一篇 下一篇
姜俣, 钱海燕*
收稿日期:
2022-07-13
修回日期:
2022-10-10
出版日期:
2023-01-05
发布日期:
2022-12-27
通讯作者:
*ahqhy712@163.com
基金资助:
JIANG Yu, QIAN Haiyan*
Received:
2022-07-13
Revised:
2022-10-10
Online:
2023-01-05
Published:
2022-12-27
Contact:
*ahqhy712@163.com
摘要: 急性心肌梗死(AMI)是由冠状动脉闭塞引起的缺血性心肌坏死,无法通过心肌细胞再生进行自我修复,坏死心肌被纤维瘢痕替代,引发心室重塑,最终导致心力衰竭。诸多临床前和临床研究证实间充质干细胞(MSCs)移植治疗AMI的安全性和有效性。MSCs由多向分化潜能、能够调节氧化应激、分泌多种细胞因子和生长因子的异质性细胞组成,在移植过程中通过转分化、细胞融合和旁分泌等途径发挥其免疫调节、血管生成、抗炎和抗凋亡等作用。迄今已有多种移植途径输注MSCs,包括心肌内注射、经冠状动脉内注射、经静脉注射等。此外,移植的细胞剂量、时机等均是影响MSCs治疗效果的重要因素。然而,MSCs移植后在梗死心肌中的滞留率和存活率均很低,进而限制其进一步发挥作用,也是导致其向临床转化应用的重要瓶颈和障碍。针对上述问题,近年来诸多研究提出新理念、新策略、新技术和新方法,如细胞预处理、优化梗死局部微环境、联合基因治疗或组织工程技术、外泌体输注、靶向移植干细胞及其外泌体等,显著提高了MSCs的移植效率和治疗效果,为干细胞修复梗死心肌的研究和转化揭开新的篇章。本文对近年来MSCs修复梗死心肌的进展做一综述。
中图分类号:
姜俣, 钱海燕. 间充质干细胞治疗心肌梗死的研究进展[J]. 基础医学与临床, 2023, 43(1): 21-29.
JIANG Yu, QIAN Haiyan. Progress in application of mesenchymal stem cells in treatment of acute myocardial infarction[J]. Basic & Clinical Medicine, 2023, 43(1): 21-29.
[1] | Rojas-Rios P, Gonzalez-Reyes A. Concise review: The plasticity of stem cell niches: a general property behind tissue homeostasis and repair[J]. Stem Cells, 2014, 32: 852-859. |
[2] | Jackson KA, Mi T, Goodell MA. Hematopoietic potential of stem cells isolated from murine skeletal muscle[J]. Proc Natl Acad Sci U S A, 1999, 96: 14482-14486. |
[3] | Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell[J]. Cell, 2001, 105: 369-377. |
[4] | Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126: 663-676. |
[5] | Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284: 143-147. |
[6] | Hodgkinson CP, Bareja A, Gomez JA, et al. Emerging concepts in paracrine mechanisms in regenerative cardiovascular medicine and biology[J]. Circ Res, 2016, 118: 95-107. |
[7] | Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans[J]. Science, 2009, 324: 98-102. |
[8] | Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction[J]. N Engl J Med, 2001, 344: 1750-1757. |
[9] | Yang YJ, Qian HY, Huang J, et al. Atorvastatin treatment improves survival and effects of implanted mesenchymal stem cells in post-infarct swine hearts[J]. Eur Heart J, 2008, 29: 1578-1590. |
[10] | Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts[J]. Nature, 2004, 428: 664-668. |
[11] | Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation[J]. Nat Med, 2004, 10: 494-501. |
[12] | Wu JM, Hsueh YC, Ch'ang HJ, et al. Circulating cells contribute to cardiomyocyte regeneration after injury[J]. Circ Res, 2015, 116: 633-641. |
[13] | Gnecchi M, Zhang Z, Ni A, et al. Paracrine mechanisms in adult stem cell signaling and therapy[J]. Circ Res, 2008, 103: 1204-1219. |
[14] | Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function[J]. Circulation, 1999, 100: II247-256. |
[15] | Mathiasen AB, Qayyum AA, Jorgensen E, et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial)[J]. Eur Heart J, 2015, 36: 1744-1753. |
[16] | Heldman AW, DiFede DL, Fishman JE, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial[J]. JAMA, 2014, 311: 62-73. |
[17] | Bartunek J, Behfar A, Dolatabadi D, et al. Cardiopoietic stem cell therapy in heart failure: the C-CURE (cardiopoietic stem cell therapy in heart failure) multicenter randomized trial with lineage-specified biologics[J]. J Am Coll Cardiol, 2013, 61: 2329-2338. |
[18] | Perin EC, Borow KM, Silva GV, et al. A phase II dose-escalation study of allogeneic mesenchymal precursor cells in patients with ischemic or nonischemic heart failure[J]. Circ Res, 2015, 117: 576-584. |
[19] | Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction[J]. J Am Coll Cardiol, 2009, 54: 2277-2286. |
[20] | Pompilio G, Nigro P, Bassetti B, et al. Bone marrow cell therapy for ischemic heart disease: the never ending story[J]. Circ Res, 2015, 117: 490-493. |
[21] | Teng CJ, Luo J, Chiu RC, et al. Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty[J]. J Thorac Cardiovasc Surg, 2006, 132: 628-632. |
[22] | Zhang H, Chen H, Wang W, et al. Cell survival and redistribution after transplantation into damaged myocardium[J]. J Cell Mol Med, 2010, 14: 1078-1082. |
[23] | Zhang H, Song P, Tang Y, et al. Injection of bone marrow mesenchymal stem cells in the borderline area of infarcted myocardium: heart status and cell distribution[J]. J Thorac Cardiovasc Surg, 2007, 134: 1234-1240. |
[24] | Kehat I, Khimovich L, Caspi O, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells[J]. Nat Biotechnol, 2004, 22: 1282-1289. |
[25] | Garot J, Unterseeh T, Teiger E, et al. Magnetic reson-ance imaging of targeted catheter-based implantation of myogenic precursor cells into infarcted left ventricular myocardium[J]. J Am Coll Cardiol, 2003, 41: 1841-1846. |
[26] | Dick AJ, Guttman MA, Raman VK, et al. Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine[J]. Circulation, 2003, 108: 2899-2904. |
[27] | Thompson CA, Nasseri BA, Makower J, et al. Percutaneous transvenous cellular cardiomyoplasty. A novel nonsurgical approach for myocardial cell transplantation[J]. J Am Coll Cardiol, 2003, 41: 1964-1971. |
[28] | Strauer BE, Brehm M, Zeus T, et al. Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction[J]. Dtsch Med Wochenschr, 2001, 126: 932-938. |
[29] | Mayfield AE, Tilokee EL, Latham N, et al. The effect of encapsulation of cardiac stem cells within matrix-enriched hydrogel capsules on cell survival, post-ischemic cell retention and cardiac function[J]. Biomaterials, 2014, 35: 133-142. |
[30] | Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy[J]. Lancet, 2003, 362: 697-703. |
[31] | Zhang M, Mal N, Kiedrowski M, et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction[J]. FASEB J, 2007, 21: 3197-3207. |
[32] | Taghavi S, George JC. Homing of stem cells to ischemic myocardium[J]. Am J Transl Res, 2013, 5: 404-411. |
[33] | Vicario J, Campos C, Piva J, et al. Transcoronary sinus administration of autologous bone marrow in patients with chronic refractory stable angina Phase 1[J]. Cardiovasc Radiat Med, 2004, 5: 71-76. |
[34] | Halkos ME, Zhao ZQ, Kerendi F, et al. Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction[J]. Basic Res Cardiol, 2008, 103: 525-536. |
[35] | Hashemi SM, Ghods S, Kolodgie FD, et al. A placebo controlled, dose-ranging, safety study of allogenic mesenchymal stem cells injected by endomyocardial delivery after an acute myocardial infarction[J]. Eur Heart J, 2008, 29: 251-259. |
[36] | Lee ST, White AJ, Matsushita S, et al. Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction[J]. J Am Coll Cardiol, 2011, 57: 455-465. |
[37] | Traverse JH, Henry TD, Pepine CJ, et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarc-tion: the TIME randomized trial[J]. JAMA, 2012, 308: 2380-2389. |
[38] | Traverse JH, Henry TD, Ellis SG, et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial[J]. JAMA, 2011, 306: 2110-2119. |
[39] | Hou JF, Zhang H, Yuan X, et al. In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation[J]. Lasers Surg Med, 2008, 40: 726-733. |
[40] | Mosser DD, Caron AW, Bourget L, et al. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis[J]. Mol Cell Biol, 1997, 17: 5317-5327. |
[41] | Li N, Zhang Q, Qian H, et al. Atorvastatin induces autophagy of mesenchymal stem cells under hypoxia and serum deprivation conditions by activating the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway[J]. Chin Med J (Engl), 2014, 127: 1046-1051. |
[42] | Chandra M, Surendra K, Kapoor R K, et al. Oxidant stress mechanisms in heart failure[J]. Boll Chim Farm, 2000, 139: 149-152. |
[43] | Gurusamy N, Ray D, Lekli I, et al. Red wine antioxidant resveratrol-modified cardiac stem cells regenerate infarcted myocardium[J]. J Cell Mol Med, 2010, 14: 2235-2239. |
[44] | Drowley L, Okada M, Beckman S, et al. Cellular antioxidant levels influence muscle stem cell therapy[J]. Mol Ther, 2010, 18: 1865-1873. |
[45] | Stanley BA, Sivakumaran V, Shi S, et al. Thioredoxin reductase-2 is essential for keeping low levels of H(2)O(2) emission from isolated heart mitochondria[J]. J Biol Chem, 2011, 286: 33669-33677. |
[46] | Retuerto MA, Schalch P, Patejunas G, et al. Angiogenic pretreatment improves the efficacy of cellular cardiomyoplasty performed with fetal cardiomyocyte implantation[J]. J Thorac Cardiovasc Surg, 2004, 127: 1041-1049; discussion 1049-1051. |
[47] | Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy[J]. Nat Rev Cancer, 2008, 8: 592-603. |
[48] | Yang YJ, Qian HY, Huang J, et al. Combined therapy with simvastatin and bone marrow-derived mesenchymal stem cells increases benefits in infarcted swine hearts[J]. Arterioscler Thromb Vasc Biol, 2009, 29: 2076-2082. |
[49] | Han XJ, Li H, Liu CB, et al. Guanxin Danshen Formulation improved the effect of mesenchymal stem cells transplantation for the treatment of myocardial infarction probably via enhancing the engraftment[J]. Life Sci, 2019, 233: 116740. |
[50] | Hu S, Huang M, Nguyen PK, et al. Novel microRNA prosurvival cocktail for improving engraftment and function of cardiac progenitor cell transplantation[J]. Circulation, 2011, 124: S27-34. |
[51] | Ong SG, Lee WH, Huang M, et al. Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer[J]. Circulation, 2014, 130: S60-69. |
[52] | Langer R, Tirrell DA. Designing materials for biology and medicine[J]. Nature, 2004, 428: 487-492. |
[53] | Geckil H, Xu F, Zhang X, et al. Engineering hydrogels as extracellular matrix mimics[J]. Nanomedicine (Lond), 2010, 5: 469-484. |
[54] | Kutschka I, Chen IY, Kofidis T, et al. Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts[J]. Circulation, 2006, 114: I167-173. |
[55] | Sekine H, Shimizu T, Hobo K, et al. Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts[J]. Circulation, 2008, 118: S145-152. |
[56] | Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury[J]. Stem Cell Res, 2010, 4: 214-222. |
[57] | Sluijter JP, Verhage V, Deddens J C, et al. Microvesicles and exosomes for intracardiac communication[J]. Cardiovasc Res, 2014, 102: 302-311. |
[58] | Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells[J]. Int J Mol Sci, 2014, 15: 4142-4157. |
[59] | Teng X, Chen L, Chen W, et al. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarc-ted myocardium contributing to angiogenesis and anti-inflammation[J]. Cell Physiol Biochem, 2015, 37: 2415-2424. |
[60] | Shao L, Zhang Y, Lan B, et al. miRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair[J]. Biomed Res Int, 2017, 2017: 4150705. |
[61] | Ma T, Chen Y, Chen Y, et al. microRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction[J]. Stem Cells Int, 2018, 2018: 3290372. |
[62] | Wei Z, Qiao S, Zhao J, et al. miRNA-181a over-expression in mesenchymal stem cell-derived exosomes influenced inflammatory response after myocardial ischemia-reperfu-sion injury[J]. Life Sci, 2019, 232: 116632. |
[63] | Xu R, Zhang F, Chai R, et al. Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization[J]. J Cell Mol Med, 2019, 23: 7617-7631. |
[64] | Huang P, Wang L, Li Q, et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19[J]. Cardiovasc Res, 2020, 116: 353-367. |
[65] | Sun SJ, Wei R, Li F, et al. Mesenchymal stromal cell-derived exosomes in cardiac regeneration and repair[J]. Stem Cell Reports, 2021, 16: 1662-1673. |
[1] | 于曼殊, 赵晓敏, 邱明月, 刘春冉, 那日苏. 牙源性干细胞治疗帕金森病的研究进展[J]. 基础医学与临床, 2024, 44(9): 1298-1302. |
[2] | 赵俊丽, 朱君君, 詹秋楠, 刘苗. 骨髓间充质干细胞来源外泌体抑制高糖诱导的腹膜间皮细胞EMT[J]. 基础医学与临床, 2024, 44(8): 1149-1156. |
[3] | 宋佳, 赵峰, 张婷, 徐静, 孙静莉, 陈震宇. 人羊膜间充质干细胞对大鼠子宫瘢痕的修复作用[J]. 基础医学与临床, 2024, 44(7): 1002-1007. |
[4] | 高璐, 蔡孟华, 许依, 何维, 陈慧, 张建民. 过表达膜定位IL-3的293T细胞外泌体的纯化及体外功能验证[J]. 基础医学与临床, 2024, 44(7): 947-953. |
[5] | 龚金涛, 厉建伟, 李玉恒, 李堑, 赵春华. 骨髓间充质干细胞缓解模拟微重力对小鼠大脑皮质的不利影响[J]. 基础医学与临床, 2024, 44(6): 772-778. |
[6] | 高竞溪, 赵晓妍, 朱星雨, 孙昭, 韩钦, 赵春华. BM-MSCs延缓CD8+初始T细胞衰老[J]. 基础医学与临床, 2024, 44(5): 683-689. |
[7] | 李娜, 李涛, 杨冬梨, 姚媛. 和厚朴酚抑制人脂肪间充质干细胞增殖[J]. 基础医学与临床, 2024, 44(4): 483-488. |
[8] | 景光旭, 王张鹏, 刘忠钰, 吕双, 孙红玉. 低氧预处理胎盘间充质干细胞减轻重症急性胰腺炎模型小鼠胰腺组织损伤[J]. 基础医学与临床, 2023, 43(9): 1346-1352. |
[9] | 颜晨红, 金儿. 外泌体PD-L1在非小细胞肺癌诊断和治疗上的研究进展[J]. 基础医学与临床, 2023, 43(9): 1457-1461. |
[10] | 方路, 刘睿奇, 梁鹏, 岑瑛. 外泌体miRNAs在器官纤维化中作用的研究进展[J]. 基础医学与临床, 2023, 43(9): 1472-1476. |
[11] | 杨雅倩, 潘艳芳, 屈梦扬, 方艳, 应小平, 张玫倩, 魏静. 外泌体在肝癌前病变发生发展中作用的研究进展[J]. 基础医学与临床, 2023, 43(9): 1453-1456. |
[12] | 张亮亮, 赵程锦, 周煜虎, 曹博, 段明明, 冯阳阳. LncRNA FGD5-AS1调节miR-93-5p/BMP2轴促进人骨髓间充质干细胞成骨分化[J]. 基础医学与临床, 2023, 43(8): 1179-1185. |
[13] | 陈星星, 赛依帕, 胡筱霞, 王三萍, 罗璇, 刘璟. 人脐带间充质干细胞来源外泌体对脑瘫小鼠神经功能损伤的保护作用[J]. 基础医学与临床, 2023, 43(8): 1201-1207. |
[14] | 李卓婷, 尚颖旭, 汪海燕, 蒋乔, 丁宝全, 李静, 赵春华. 间充质干细胞工程化的DNA纳米结构构建及其在小鼠肺组织靶向递送中的应用[J]. 基础医学与临床, 2023, 43(7): 1110-1116. |
[15] | 武文婧, 高竞溪, 赵晓妍, 孙昭, 韩钦, 赵春华. 芳香烃受体调控人脂肪间充质干细胞的免疫调节功能[J]. 基础医学与临床, 2023, 43(6): 889-897. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备07012236号
网站版权 © 《基础医学与临床》编辑部