[1] |
Manning KS, Cooper TA. The roles of RNA processing in translating genotype to phenotype[J]. Nat Rev Mol Cell Biol, 2017, 18:102-114.
|
[2] |
Gao G, Xie A, Huang SC, et al. Role of RBM25/LUC7L3 in abnormal cardiac sodium channel splicing regulation in human heart failure[J]. Circulation, 2011, 124:1124-1131.
|
[3] |
张美莲, 王志星, 胡艳, 等. RNA结合蛋白作为氯福克酚药靶的机制初探[J]. 基础医学与临床, 2020, 40:621-626.
|
[4] |
Vallejo G, Mestre-Citrinovitz AC, Winterhager E, et al. CSDC2, a cold shock domain RNA-binding protein in decidualization[J]. J Cell Physiol, 2018, 234:740-748.
|
[5] |
Robyns T, Willems R, Van Cleemput J, et al. Whole exome sequencing in a large pedigree with DCM identifies a novel mutation in RBM20[J]. Acta Cardiol, 2020, 75:748-753.
|
[6] |
Gaertner A, Klauke B, Felski E, et al. Cardiomyopathy-associated mutations in the RS domain affect nuclear localization of RBM20[J]. Hum Mutat, 2020, 41:1931-1943.
|
[7] |
Kayvanpour E, Sedaghat-Hamedani F, Amr A, et al. Genotype-phenotype associations in dilated cardiomyopathy:meta-analysis on more than 8000 individuals[J]. Clin Res Cardiol, 2017, 106:127-139.
|
[8] |
Cuijpers I, Papageorgiou AP, Carai P, et al. Linagliptin prevents left ventricular stiffening by reducing titin cleavage and hypophosphorylation[J]. J Cell Mol Med, 2021, 25:729-741.
|
[9] |
Van Der Pijl RJ, Hudson B, Granzier-Nakajima T, et al. Deleting titin's C-terminal PEVK exons increases passive stiffness, alters splicing, and induces cross-sectional and longitudinal hypertrophy in skeletal muscle[J]. Front Physiol, 2020, 11:494.doi:10.3389/fphys.2020.00494.
|
[10] |
Rodrigues PG, Miranda-Silva D, Costa SM, et al. Early myocardial changes induced by doxorubicin in the nonfailing dilated ventricle[J]. Am J Physiol Heart Circ Physiol, 2019, 316:H459-h475.
|
[11] |
Liss M, Radke MH, Eckhard J, et al. Drug discovery with an RBM20 dependent titin splice reporter identifies cardenolides as lead structures to improve cardiac filling[J]. PLoS One, 2018, 13:e0198492. doi:10.1371/journal.pone.0198492.
|
[12] |
Yang J, Hung LH, Licht T, et al. RBM24 is a major regulator of muscle-specific alternative splicing[J]. Dev Cell, 2014, 31:87-99.
|
[13] |
Weeland CJ, Van Den Hoogenhof MM, Beqqali A, et al. Insights into alternative splicing of sarcomeric genes in the heart[J]. J Mol Cell Cardiol, 2015, 81:107-113.
|
[14] |
Liu J, Kong X, Zhang M, et al. RNA binding protein 24 deletion disrupts global alternative splicing and causes dilated cardiomyopathy[J]. Protein Cell, 2019, 10:405-416.
|
[15] |
Poon KL, Tan KT, Wei YY, et al. RNA-binding protein RBM24 is required for sarcomere assembly and heart contractility[J]. Cardiovasc Res, 2012, 94:418-427.
|
[16] |
Shao M, Lu T, Zhang C, et al. Rbm24 controls poly(A) tail length and translation efficiency of crystallin mRNAs in the lens via cytoplasmic polyadenylation[J]. Proc Natl Acad Sci U S A, 2020, 117:7245-7254.
|
[17] |
Zhang T, Lin Y, Liu J, et al. Rbm24 regulates alternative splicing switch in embryonic stem cell cardiac lineage differentiation[J]. Stem Cells, 2016, 34:1776-1789.
|
[18] |
Zhang M, Zhang Y, Xu E, et al. Rbm24, a target of p53, is necessary for proper expression of p53 and heart development[J]. Cell Death Differ, 2018, 25:1118-1130.
|
[19] |
Sang K, Yi T, Huang X, et al. MiR-370-5p inhibits the progression of breast cancer via targeting LUC7L3[J]. J Recept Signal Transduct Res, 2021,41:442-450.
|
[20] |
Kroncke BM, Yang T, Roden DM. Multiple mechanisms underlie increased cardiac late sodium current[J]. Heart Rhythm, 2019, 16:1091-1097.
|
[21] |
Lei R, Li J, Liu F, et al. HIF-1α promotes the keloid development through the activation of TGF-β/Smad and TLR4/MyD88/NF-κB pathways[J]. Cell Cycle, 2019, 18:3239-3250.
|
[22] |
Stepniak-Konieczna E, Konieczny P, Cywoniuk P, et al. AON-induced splice-switching and DMPK pre-mRNA degradation as potential therapeutic approaches for Myotonic Dystrophy type 1[J]. Nucleic Acids Res, 2020, 48:2531-2543.
|