[1]Stamm H. Nanomaterials should be defined[J]. Nature, 2011, 476: 399-399. doi: 10.1038/476399c. [2]Miernicki M, Hofmann T, Eisenberger I, et al. Legal and practical challenges in classifying nanomaterials according to regulatory definitions[J]. Nat Nanotechnol, 2019, 14: 208-216. doi: 10.1038/s41565-019-0396-z. [3]Saleh TA. Nanomaterials: Classification, properties, and environmental toxicities[J]. Environ Technol Innov, 2020, 20: 101067. doi: 10.1016/j.eti.2020.101067. [4]Wong XY, Sena-Torralba A, Alvarez-Diduk R, et al. Nanomaterials for nanotheranostics: tuning their properties according to disease needs[J]. ACS Nano, 2020, 14: 2585-2627. doi: 10.1021/acsnano.9b08133. [5]Zhang XQ, Xu X, Bertrand N, et al. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine[J]. Adv Drug Deliv Rev, 2012, 64: 1363-1384. doi: 10.1016/j.addr.2012.08.005. [6]Yan L, Zhao F, Li SJ, et al. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes[J]. Nanoscale, 2011, 3: 362-382. doi: 10.1039/c0nr00647e. [7]Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases[J]. Talanta, 2021, 230: 122026. doi: 10.1016/j.talanta.2020.122026. [8]Talebian S, Wallace GG, Schroeder A, et al. Nanotechnology-based disinfectants and sensors for SARS-CoV-2[J]. Nat Nanotechnol, 2020,15: 618-621. doi: 10.1038/s41565-020-0751-0. [9]Moitra P, Alafeef M, Dighe K, et al. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles[J]. ACS Nano, 2020,14: 7617-7627. doi: 10.1021/acsnano.0c03822. [10]Alafeef M, Dighe K, Moitra P, et al. Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip[J]. ACS Nano, 2020, 14: 17028-17045. doi: 10.1021/acsnano.0c06392. [11]Qiu GG, Gai ZB, Tao YL, et al. Dual-functional plas-monic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection[J]. ACS Nano, 2020, 14: 5268-5277. doi: 10.1021/acsnano.0c02439. [12]Liu D, Ju CH, Han C, et al. Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen[J]. Biosens Bioelectron, 2021, 173: 112817. doi: 10.1016/j.bios.2020.112817. [13]Fabiani L, Saroglia M, Galatà G, et al. Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: A reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva[J]. Biosens Bioelectron, 2021, 171: 112686. doi: 10.1016/j.bios.2020.112686. [14]Roda A, Cavalera S, Di Nardo F, et al. Dual lateral flow optical/chemiluminescence immunosensors for the rapid detection of salivary and serum IgA in patients with COVID-19 disease[J]. Biosens Bioelectron, 2021, 172: 112765. doi: 10.1016/j.bios.2020.112765. [15]Ahmadivand A, Gerislioglu B, Ramezani Z, et al. Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins[J]. Biosens Bioelectron, 2021, 177: 112971. doi: 10.1016/j.bios.2021.112971. [16]Falahi S, Rafiee-Pour HA, Zarejousheghani M, et al. Non-coding RNA-based biosensors for early detection of liver cancer[J]. Biomedicines, 2021, 9: 964. doi: 10.3390/biomedicines9080964. [17]Song YJ, Cao KH, Li WJ, et al. Optimal film thickness of rGO/MoS2 @ polyaniline nanosheets of 3D arrays for carcinoembryonic antigen high sensitivity detection[J]. Microchem J, 2020, 155: 104694. doi: 10.1016/j.microc.2020.104694. [18]Wang N, Zhao XQ, Chen H, et al. Fabrication of novel electrochemical immunosensor by mussel-inspired chemistry and surface-initiated PET-ATRP for the simultaneous detection of CEA and AFP[J]. React Funct Polym, 2020, 154: 104632. doi: 10.1016/j.reactfunctpolym.2020.104632. [19]Huang RR, He NY, Li ZY, et al. Recent progresses in DNA nanostructure-based biosensors for detection of tumor markers[J]. Biosens Bioelectron, 2018, 109: 27-34. doi: 10.1016/j.bios.2018.02.053. [20]Zhao JX, Liu C, Li YK, et al. Thermophoretic detection of exosomal microRNAs by nanoflares[J]. J Am Chem Soc, 2020, 142: 4996-5001. doi: 10.1021/jacs.9b13960. [21]Yaman YT, Vural OA, Bolat G, et al. One-pot synthesized gold nanoparticle-peptide nanotube modified disposable sensor for impedimetric recognition of miRNA 410[J]. Sens Actuators B Chem, 2020, 320: 128343. doi: 10.1016/j.snb.2020.128343. [22]Sehit E, Altintas Z. Significance of nanomaterials in electrochemical glucose sensors: An updated review (2016-2020)[J]. Biosens Bioelectron, 2020, 159: 112165. doi: 10.1016/j.bios.2020.112165. [23]Xuan X, Yoon HS, Park JY. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate[J]. Biosens Bioelectron, 2018, 109: 75-82. doi: 10.1016/j.bios.2018.02.054. [24]Karim MN, Anderson SR, Singh S, et al. Nanostructured silver fabric as a free-standing NanoZyme for colorimetric detection of glucose in urine[J]. Biosens Bioelectron,2018, 110: 8-15. doi: 10.1016/j.bios.2018.03.025. [25]Gao WY, Zhou XJ, Heinig NF, et al. Nonenzymatic saliva-range glucose sensing using electrodeposited cup-rous oxide nanocubes on a graphene strip[J]. ACS Appl Nano Mater, 2021, 4: 4790-4799. doi: 10.1021/acsanm.1c00381. [26]Mukherjee S, Madamsetty VS, Bhattacharya D, et al. Recent advancements of nanomedicine in neurodegenerative disorders theranostics[J]. Adv Funct Mater, 2020, 30: 2003054. doi: 10.1002/adfm.202003054. [27]Martinelli C, Pucci C, Battaglini M, et al. Antioxidants and nanotechnology: promises and limits of potentially disruptive approaches in the treatment of central nervous system diseases[J]. Adv Healthc Mater, 2020, 9: 1901589. doi: 10.1002/adhm.201901589. [28]Peng F, Jeong S, Ho A, et al. Recent progress in plasmonic nanoparticle-based biomarker detection and cytometry for the study of central nervous system disorders[J]. Cytometry Part A, 2021. doi: 10.1002/cyto.a.24489. [29]Hassan Q, Li SP, Ferrag C, et al. Electrochemical biosensors for the detection and study of α-synuclein related to Parkinson's disease-A review[J]. Anal Chim Acta, 2019, 1089: 32-39. doi: 10.1016/j.aca.2019.09.013. [30]Zhou J, Jangili P, Son S, et al. Fluorescent diagnostic probes in neurodegenerative diseases[J]. Adv Mater, 2020, 32: 2001945. doi: 10.1002/adma.202001945. [31]Chan HN, Xu D, Ho SL, et al. Ultra-sensitive detection of protein biomarkers for diagnosis of Alzheimer's disease[J]. Chem Sci, 2017, 8: 4012-4018. doi: 10.1039/c6sc 05615f. [32]Park JS, Kim ST, Kim SY, et al. A novel kit for early diagnosis of Alzheimer's disease using a fluorescent nanoparticle imaging[J]. Sci Rep, 2019, 9: 13184. doi: 10.1038/s41598-019-49711-y. [33]Mastroeni D, McKee A, Grover A, et al. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's disease[J]. PLoS One, 2009, 4:e6617. doi: 10.1371/journal.pone.0006617. [34]Taniselass S, Arshad MKM, Gopinath SCB. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers[J]. Biosens Bioelectron, 2019,130: 276-292. doi: 10.1016/j.bios.2019.01.047. [35]Yola ML, Atar N. Development of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymer[J]. Biosens Bioelectron, 2019, 126:418-424. doi: 10.1016/j.bios.2018.11.016. [36]Wu Q, Li S, Sun Y, et al. Hollow gold nanoparticle-enhanced SPR based sandwich immunoassay for human cardiac troponin I[J]. Microchim Acta, 2017, 184: 2395-2402. doi: 10.1007/s00604-017-2245-9. [37]Zhang D, Huang L, Liu B, et al. Quantitative and ultrasensitive detection of multiplex cardiac biomarkers in lateral flow assay with core-shell SERS nanotags[J]. Biosens Bioelectron, 2018, 106: 204-211. doi: 10.1016/j.bios.2018.01.062. [38]Bellin G, Gardin C, Ferroni L, et al. Exosome in cardiovascular diseases: a complex world full of hope[J]. Cells, 2019, 8: 166. doi: 10.3390/cells8020166. [39]Chen YX, Huang KJ, Niu KX. Recent advances in signal amplification strategy based on oligonucleotide and nanomaterials for microRNA detection-a review[J]. Biosens Bioelectron, 2018, 99: 612-624. doi: 10.1016/j.bios.2017.08.036. |