[1]Winn SR, Hu Y, Sfeir C, et al. Gene therapy approaches for modulating bone regeneration[J]. Adv Drug Deliv Rev, 2000, 42: 121-138. [2]Chen C, Yang Z, Tang X. Chemical modifications of nucleic acid drugs and their delivery systems for gene-based therapy[J]. Med Res Rev, 2018, 38: 829-869. [3]Zamore PD, Tuschl T, Sharp PA, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals[J]. Cell, 2000, 101: 25-33. [4]Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics[J]. Nat Rev Drug Discov, 2019, 18: 421-446. [5]Saw PE, Song EW. siRNA therapeutics: a clinical reality[J]. Sci China Life Sci, 2020, 63: 485-500. [6]Scott LJ, Keam SJ. Lumasiran: first approval[J]. Drugs, 2021, 81: 277-282. [7]Raal FJ, Kallend D, Ray KK, et al. Inclisiran for the treatment of heterozygous familial hypercholesterolemia[J]. N Engl J Med, 2020, 382: 1520-1530. [8]Gharanei S, Shabir K, Brown JE, et al. Regulatory microRNAs in brown, brite and white adipose tissue[J]. Cells, 2020, 9, 2489. doi: 10.3390/cells9112489. [9]Miller T, Cudkowicz M, Shaw PJ, et al. Phase 1-2 trial of antisense oligonucleotide tofersen for SOD1 ALS[J]. N Engl J Med, 2020, 383: 109-119. [10]Shimamura M, Morishita R. Naked plasmid DNA for gene therapy[J]. Curr Gene Ther, 2011, 11: 433. doi: 10.2174/156652311798192824. [11]Baden LR, EL Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine[J]. N Engl J Med, 2021, 384: 403-416. [12]Wang X. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine[J]. N Engl J Med, 2021, 384: 1577-1578. [13]Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines[J]. Nat Rev Clin Oncol, 2021, 18: 215-229. [14]Omer L, Hudson EA, Zheng S, et al. CRISPR correction of a homozygous low-density lipoprotein receptor mutation in familial hypercholesterolemia induced pluripotent stem cells[J]. Hepatol Commun, 2017, 1: 886-898. [15]Bengtsson NE, Hall JK, Odom GL, et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy[J]. Nat Commun, 2017, 8: 14454. doi: 10.1038/ncomms14454. [16]Yin H, Kauffman KJ, Anderson DG. Delivery technologies for genome editing[J]. Nat Rev Drug Discov, 2017, 16: 387-399. [17]Wilbie D, Walther J, Mastrobattista E. Delivery aspects of CRISPR/Cas for in vivo genome editing[J]. Acc Chem Res, 2019, 52: 1555-1564. [18]Liu J, Chang J, Jiang Y, et al. Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles[J]. Adv Mater, 2019, 31: e1902575. doi: 10.1002/adma.201902575. [19]Finer M, Glorioso J. A brief account of viral vectors and their promise for gene therapy[J]. Gene Ther, 2017, 24: 1-2. [20]Shirley JL, De Jong YP, Terhorst C, et al. Immune responses to viral gene therapy vectors[J]. Mol Ther, 2020, 28: 709-722. [21]Mohammadinejad R, Dehshahri A, Sagar Madamsetty V, et al. In vivo gene delivery mediated by non-viral vectors for cancer therapy[J]. J Control Release, 2020, 325: 249-275. [22]Wojnilowicz M, Glab A, Bertucci A, et al. Super-resolution imaging of proton sponge-triggered rupture of endosomes and cytosolic release of small interfering RNA[J]. ACS Nano, 2019, 13: 187-202. [23]Zhi D, Bai Y, Yang J, et al. A review on cationic lipids with different linkers for gene delivery[J]. Adv Colloid Interface Sci, 2018, 253: 117-140. [24]Ponti F, Campolungo M, Melchiori C, et al. Cationic lipids for gene delivery: many players, one goal[J]. Chem Phys Lipids, 2021, 235: 105032. doi: 10.1016/j.chemphyslip.2020.105032. [25]Mochizuki S, Kanegae N, Nishina K, et al. The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine[J]. Biochim Biophys Acta, 2013, 1828: 412-418. [26]Ho W, Gao M, Li F, et al. Next-generation vaccines: nanoparticle-mediated DNA and mRNA delivery[J]. Adv Healthc Mater, 2021, 10: e2001812. doi: 10.1002/adhm.202001812. [27]Akinc A, Maier MA, Manoharan M, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs[J]. Nat Nanotechnol, 2019, 14: 1084-1087. [28]Finn JD, Smith AR, Patel MC, et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing[J]. Cell Rep, 2018, 22: 2227-2235. [29]Wang J, Ye X, Ni H, et al. Transfection efficiency evaluation and endocytosis exploration of different polymer condensed agents[J]. DNA Cell Biol, 2019, 38: 1048-1055. [30]Dias AP, Da Silva Santos S, Da Silva JV, et al. Dendrimers in the context of nanomedicine[J]. Int J Pharm, 2020, 573: 118814. doi: 10.1016/j.ijpharm.2019.118814. [31]Cai JG, Yue YA, Rui D, et al. Effect of chain length on cytotoxicity and endocytosis of cationic polymers[J]. Macromolecules, 2011, 44: 2050-2057. [32]Ding GB, Meng X, Yang P, et al. Integration of polylactide into polyethylenimine facilitates the safe and effective intracellular siRNA delivery[J]. Polymers (Basel), 2020, 12: 445. doi: 10.3390/polym12020445. [33]Wu XR, Zhang J, Zhang JH, et al. Amino acid-linked low molecular weight polyethylenimine for improved gene delivery and biocompatibility[J]. Molecules, 2020, 25: 975. doi: 10.3390/molecules25040975. [34]Yin L, Yuvienco C, Montclare JK. Protein based therapeutic delivery agents: Contemporary developments and challenges[J]. Biomaterials, 2017, 134: 91-116. [35]Thomas TJ, Tajmir-Riahi HA, Pillai C KS. Biodegradable polymers for gene delivery[J]. Molecules, 2019, 24: 3744. doi: 10.3390/molecules24203744. [36]Mohammadi Z, Eini M, Rastegari A, et al. Chitosan as a machine for biomolecule delivery: A review[J]. Carbohydr Polym, 2021, 256: 117414. doi: 10.1016/j.carbpol.2020.117414. [37]Messerschmidt VL, Chintapulau, Kuriakose AE, et al. Notch intracellular domain plasmid delivery via poly(lactic-co-glycolic acid) nanoparticles to upregulate Notch pathway molecules[J]. Front Cardiovasc Med, 2021, 8: 707897. doi: 10.3389/fcvm.2021.707897. [38]Riley MK, Vermerris W. Recent advances in nanomaterials for gene delivery-a review[J]. Nanomaterials (Basel), 2017, 7: 94. doi: 10.3390/nano7050094. [39]Mohammadinejad R, Dadashzadeh A, Moghassemi S, et al. Shedding light on gene therapy: Carbon dots for the minimally invasive image-guided delivery of plasmids and noncoding RNAs-A review[J]. J Adv Res, 2019, 18: 81-93. [40]Blokpoel Ferreras LA, Chan SY, Vazquez Reina S, et al. Rapidly transducing and spatially localized magnetofection using peptide-mediated non-viral gene delivery based on iron oxide nanoparticles[J]. ACS Appl Nano Mater, 2021, 4: 167-181. [41]Alvizo-Baez CA, Luna-Cruz IE, Vilches-Cisneros N, et al. Systemic delivery and activation of the TRAIL gene in lungs, with magnetic nanoparticles of chitosan controlled by an external magnetic field[J]. Int J Nanomedicine, 2016, 11: 6449-6458. [42]Wang P, Zhang L, Zheng W, et al. Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy[J]. Angew Chem Int Ed Engl, 2018, 57: 1491-1496. [43]Liu Y, Xx M, Zhao Y, et al. Flower-like gold nanoparticles for enhanced photothermal anticancer therapy by the delivery of pooled siRNA to inhibit heat shock stress response[J]. J Mater Chem B, 2019, 7: 586-597. [44]Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367: eaau6977. doi: 10.1126/science.aau6977. [45]Duan L, Xu L, Xu X, et al. Exosome-mediated delivery of gene vectors for gene therapy[J]. Nanoscale, 2021, 13: 1387-1397. [46]Willibald J, Harder J, Sparrer K et al. Click-modified anandamide siRNA enables delivery and gene silencing in neuronal and immune cells[J]. J Am Chem Soc, 2012, 134: 12330-12333. [47]Springer AD, Dowdy SF. GalNAc-siRNA conjugates: leading the way for delivery of RNAi therapeutics[J]. Nucleic Acid Ther, 2018, 28: 109-118. [48]Nair JK, Attarwala H, Sehgal, et al. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates[J]. Nucleic Acids Res, 2017, 45: 10969-10977. [49]Aalim L, Islam G, Desaulniers JP. Targeted delivery and enhanced gene-silencing activity of centrally modified folic acid-siRNA conjugates[J]. Nucleic Acids Res, 2020, 48: 75-85. [50]Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J]. Nat Biotechnol, 2015, 33: 941-951. [51]Suk JS, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery[J]. Adv Drug Deliv Rev, 2016, 99(Pt A): 28-51. [52]Del Prado A,Civantos A, Martinez-Campos E, et al. Efficient and low cytotoxicity gene carriers based on amine-functionalized polyvinylpyrrolidone[J]. Polymers (Basel), 2020, 12: 2724. doi: 10.3390/polym12112724. [53]Lee Y, Lee J, Kim M, et al. Brain gene delivery using histidine and arginine-modified dendrimers for ischemic stroke therapy[J]. J Control Release, 2021, 330: 907-919. [54]Qiu Y, Tong S, Zhang L, et al. Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions[J]. Nat Commun, 2017, 8: 15594. doi: 10.1038/ncomms15594. [55]Xiong X, Xu Z, Huang H, et al. A NIR light triggered disintegratable nanoplatform for enhanced penetration and chemotherapy in deep tumor tissues[J]. Biomaterials, 2020, 245: 119840. doi: 10.1016/j.biomaterials.2020.119840. [56]Liu Y, Huo Y, Yao L, et al. Transcytosis of nanomedic-ine for tumor penetration[J]. Nano Lett, 2019, 19: 8010-8020. [57]Du X, Wang J, Zhou Q, et al. Advanced physical techniques for gene delivery based on membrane perforation[J]. Drug Deliv, 2018, 25: 1516-1525. [58]Dimcevski G, Kotopoulis S, Bjanes T, et al. A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer[J]. J Control Release, 2016, 243: 172-181. [59]Wang J, Xie L, Wang T, et al. Visible light-switched cytosol release of siRNA by amphiphilic fullerene derivative to enhance RNAi efficacy in vitro and in vivo[J]. Acta Biomater, 2017, 59: 158-169. [60]Brock DJ, Kondow-Mcconaghy HM, Hager EC, et al. Endosomal escape and cytosolic penetration of macro-molecules mediated by synthetic delivery agents[J]. Bioconjugate Chem, 2019, 30: 293-304. [61]Sun W, Davis PB. Reducible DNA nanoparticles enhance in vitro gene transfer via an extracellular mechanism[J]. J Control Release, 2010, 146: 118-127. [62]Nie JJ, Liu Y, Qi Y, et al. Charge-reversal nanocomolexes-based CRISPR/Cas9 delivery system for loss-of-func-tion oncogene editing in hepatocellular carcinoma[J]. J Control Release, 2021, 333: 362-373. [63]Fang Y, Lin X, Jin X, et al. Design and fabrication of dual redox responsive nanoparticles with diselenide linkage combined photodynamically to effectively enhance gene expression[J]. Int J Nanomedicine, 2020, 15: 7297-7314. [64]Bai H, Lester GMS, Petishnok LC, et al. Cytoplasmic transport and nuclear import of plasmid DNA[J]. Biosci Rep, 2017, 37: BSR20160616. doi: 10.1042/BSR20160616. [65]Tan G, Liu D, Zhu R, et al. A core-shell nanoplatform as a nonviral vector for targeted delivery of genes to the retina[J]. Acta Biomater, 2021, 134: 605-620. [66]Palchetti S, Digiacomo L, Giulimondi F, et al. A mechanistic explanation of the inhibitory role of the protein corona on liposomal gene expression[J]. Biochim Biophys Acta Biomembr, 2020, 1862: 183159. doi: 10.1016/j.bbamem.2019.183159. [67]Zhang W, Meng X, Liu H, et al. Ratio of polycation and serum is a crucial index for determining the RNAi efficiency of polyplexes[J]. ACS Appl Mater Interfaces, 2017, 9: 43529-43537. [68]Cagliani R, Gatto F, Bardi G. Protein adsorption: a feasible method for nanoparticle functionalization?[J]. Materials (Basel), 2019, 12: 1991. doi: 10.3390/ma12121991. |