基础医学与临床 ›› 2021, Vol. 41 ›› Issue (7): 1071-1075.

• 医学教育 • 上一篇    下一篇

培养医学生机器学习的实践素养

刘大路, 李静*   

  1. 空军军医大学 军事预防医学系 辐射防护医学教研室 特殊作业环境危害评估与防治教育部重点实验室,陕西 西安710032
  • 收稿日期:2020-10-28 修回日期:2021-04-01 出版日期:2021-07-05 发布日期:2021-06-17
  • 通讯作者: *jingli@fmmu.edu.cn
  • 基金资助:
    国家自然科学基金(32000876);陕西省自然科学研究计划(2019JQ-437)

Cultivating practical literacy of machine learning for medical students

LIU Da-lu, LI Jing*   

  1. Department of Radiation Medicine and Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Air Force Medical University, Xi'an 710032, China
  • Received:2020-10-28 Revised:2021-04-01 Online:2021-07-05 Published:2021-06-17
  • Contact: *jingli@fmmu.edu.cn

摘要: 机器学习(ML)正快速发展为可辅助特定医学决策的临床人工智能(AI)系统。但是,目前ML面临临床数据不均一性高、临床任务机器转化难度大等限制因素。未来“智能”医生应当主导围绕临床目标和临床数据的医学和AI的创新。因此,在医学生实习或住院医师培训中以案例学习的形式,加入对ML所需最小样本量的估算和数据高级特征的临床解读等素养的实践训练,有利于培养医学生具备智能辅助诊疗的临床思维,创新更高效的智能医学决策体系。

关键词: 机器学习, 医学教育, 临床数据

Abstract: Machine learning (ML) is rapidly evolving into clinical artificial intelligence (AI) systems that can assist specific medical decisions. However, at present, ML faces the limitation factors such as high heterogeneity of clinical data and difficulty in data analysis for facilitating clinical performance. Future, “intelligent” doctors should dominate innovations in medicine and AI engineering around clinical mission and clinical data. Therefore, in the form of medical student internship or resident training case learning, adding practical training such as estimation of the minimum sample size required for ML and clinical interpretation of advanced characteristics of data is conducive to cultivating medical students with clinical capacity of reasoning to practice of computer-based diagnosis and treatment, and to develope a more efficient intelligent medical decision-making system.

Key words: machine learning, medical education, clinical data

中图分类号: