[1] Chojdak-Lukasiewicz J, Bizon A, Waliszewska-Prosol M, et al. Role of Sirtuins in physiology and diseases of the central nervous system[J]. Biomedicines, 2022, 10.doi:10.3390/biomedicines10102434. [2] Yeong KY, Berdigaliyev N, Chang Y. Sirtuins and their implications in neurodegenerative diseases from a drug discovery perspective[J]. ACS Chem Neurosci, 2020, 11:4073-91.doi:10.1021/acschemneuro.0c00696. [3] Khan H, Tiwari P, Kaur A, et al. Sirtuin acetylation and deacetylation: a complex paradigm in neurodegenerative disease[J]. Mol Neurobiol, 2021, 58:3903-17.doi:10.1007/s12035-021-02387-w. [4] Lei Y, Wang J, Wang D, et al. SIRT1 in forebrain excitatory neurons produces sexually dimorphic effects on depression-related behaviors and modulates neuronal excitability and synaptic transmission in the medial prefrontal cortex[J]. Mol Psychiatry, 2020, 25:1094-111.doi:10.1038/s41380-019-0352-1. [5] Singh V, Ubaid S. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation[J]. Inflammation, 2020, 43:1589-1598.doi:10.1007/s10753-020-01242-9. [6] Huang Q, Su H, Qi B, et al. A SIRT1 activator, ginsenoside Rc, promotes energy metabolism in cardiomyocytes and neurons[J]. J Am Chem Soc, 2021, 143:1416-1427.doi:10.1021/jacs.0c10836. [7] Li X, Feng Y, Wang XX, et al. The critical role of SIRT1 in Parkinson's disease: mechanism and therapeutic considerations[J]. Aging Dis, 2020, 11:1608-1622.doi:10.14336/AD.2020.0216. [8] Jiao F, Gong Z. The beneficial roles of SIRT1 in neuroinflammation-related diseases[J]. Oxid Med Cell Longev, 2020, 2020:6782872.doi:10.1155/2020/6782872. [9] Haque ME, Akther M, Azam S, et al. Targeting alpha-synuclein aggregation and its role in mitochondrial dysfunction in Parkinson's disease[J]. Br J Pharmacol, 2022, 179:23-45.doi:10.1111/bph.15684. [10] Dong Z, Wang Y, Hao C, et al. Sanghuangporus sanghuang extract extended the lifespan and healthspan of caenorhabditis elegans via DAF-16/SIR-2.1[J]. Front Pharmacol, 2023, 14:1136897.doi:10.3389/fphar.2023.1136897. [11] Kaitsuka T, Matsushita M, Matsushita N. Regulation of hypoxic signaling and oxidative stress via the microRNA-SIRT2 axis and its relationship with aging-related diseases[J]. Cells, 2021, 10.doi:10.3390/cells10123316. [12] Yang Q, Zhou Y, Sun Y, et al. Will Sirtuins be promising therapeutic targets for TBI and associated neurodegenerative diseases?[J]. Front Neurosci, 2020, 14:791.doi:10.3389/fnins.2020.00791. [13] Saramowicz K, Siwecka N, Galita G, et al. Alpha-synuclein contribution to neuronal and Glial damage in Parkinson's disease[J]. Int J Mol Sci, 2023, 25.doi:10.3390/ijms25010360. [14] Akbulut KG, Keskin-Aktan A, Abgarmi SA, et al. The role of SIRT2 inhibition on the aging process of brain in male rats[J]. Aging Brain, 2023, 4:100087.doi:10.1016/j.nbas.2023.100087. [15] He L, Wang J, Yang Y, et al. Mitochondrial Sirtuins in Parkinson's Disease[J]. Neurochem Res, 2022, 47:1491-1502.doi:10.1007/s11064-022-03560-w. [16] He M, Chiang HH, Luo H, et al. An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance[J]. Cell Metab, 2020, 31:580-91 e5.doi:10.1016/j.cmet.2020.01.009. [17] Nie H, Hong Y, Lu X, et al. SIRT2 mediates oxidative stress-induced apoptosis of differentiated PC12 cells[J]. Neuroreport, 2014, 25:838-842.doi:10.1097/WNR.0000000000000192. [18] Garmendia-Berges M, Sola-Sevilla N, Mera-Delgado M, et al. Age-associated changes of Sirtuin 2 expression in CNS and the periphery[J]. Biology (Basel), 2023, 12.doi:10.3390/biology12121476. [19] Hu J, Kan T, Hu X. Sirt3 regulates mitophagy level to promote diabetic corneal epithelial wound healing[J]. Exp Eye Res, 2019, 181:223-231.doi:10.1016/j.exer.2019.02.011. [20] Zhou TY, Wu YG, Zhang YZ, et al. SIRT3 retards intervertebral disc degeneration by anti-oxidative stress by activating the SIRT3/FOXO3/SOD2 signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23:9180-9188.doi:10.26355/eurrev_201911_19408. [21] Shefa U, Jeong NY, Song IO, et al. Mitophagy links oxidative stress conditions and neurodegenerative diseases[J]. Neural Regen Res, 2019, 14:749-756.doi:10.4103/1673-5374.249218. [22] Zhang S, Ma Y, Feng J. Neuroprotective mechanisms of epsilon-viniferin in a rotenone-induced cell model of Parkinson's disease: significance of SIRT3-mediated FOXO3 deacetylation[J]. Neural Regen Res, 2020, 15:2143-2153.doi:10.4103/1673-5374.282264. [23] Wang R, Sun H, Wang G, et al. Imbalance of lysine acetylation contributes to the pathogenesis of Parkinson's disease[J]. Int J Mol Sci, 2020, 21.doi:10.3390/ijms21197182. [24] Luo H, Peng C, Xu X, et al. The protective effects of mogroside V against neuronal damages by attenuating mitochondrial dysfunction via upregulating Sirtuin3[J]. Mol Neurobiol, 2022, 59:2068-2084.doi:10.1007/s12035-021-02689-z. [25] Zeng R, Wang X, Zhou Q, et al. Icariin protects rotenone-induced neurotoxicity through induction of SIRT3[J]. Toxicol Appl Pharmacol, 2019, 379:114639.doi:10.1016/j.taap.2019.114639. |