[1] |
Naughton P, Healy M, Enright F, et al. Infectious mononucleosis: diagnosis and clinical interpretation[J]. Br J Biomed Sci, 2021, 78:107-116.
|
[2] |
Abe N, Fujieda Y. Chronic active Epstein-Barr virus infection[J]. Blood, 2020, 136:2090.doi:10.1182/blood.2020008157.
|
[3] |
Shi J, Chu C, Yu M, et al. Clinical warning of hemophagocytic syndrome caused by Epstein-Barr virus[J]. Ital J Pediatr, 2021, 47:3. doi:10.1186/s13052-020-00949-7.
|
[4] |
Hue SS, Oon ML, Wang S, et al. Epstein-Barr virus-associated T- and NK-cell lymphoproliferative diseases: an update and diagnostic approach[J]. Pathology, 2020, 52:111-127.
|
[5] |
Auerbach A, Aguilera NS. Epstein-Barr virus (EBV)-associated lymphoid lesions of the head and neck[J]. Semin Diagn Pathol, 2015, 32:12-22.
|
[6] |
Murata T, Tsurumi T. Switching of EBV cycles between latent and lytic states[J]. Rev Med Virol, 2014, 24:142-153.
|
[7] |
Guo R, Gewurz BE. Epigenetic control of the Epstein-Barr lifecycle[J]. Curr Opin Virol, 2022, 52:78-88.
|
[8] |
Zuo L, Yue W, Du S, et al. An update: Epstein-Barr virus and immune evasion via microRNA regulation[J]. Virol Sin, 2017, 32:175-187.
|
[9] |
Lista MJ, Martins RP, Billant O, et al. Nucleolin directly mediates Epstein-Barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA[J]. Nat Commun, 2017, 8:16043.doi:10.1038/ncomms16043.
|
[10] |
Münz C. Latency and lytic replication in Epstein-Barr virus-associated oncogenesis[J]. Nat Rev Microbiol, 2019, 17:691-700.
|
[11] |
Praest P, Luteijn RD, Brak-Boer IGJ, et al. The influence of TAP1 and TAP2 gene polymorphisms on TAP function and its inhibition by viral immune evasion proteins[J]. Mol Immunol, 2018, 101:55-64.
|
[12] |
Li Q, Cohen JI. Epstein-Barr Virus and the human leukocyte antigen complex[J]. Curr Clin Microbiol Rep, 2019, 6:175-181.
|