1 |
Duering M , Biessels GJ , Brodtmann A , Chen C , Cordonnier C , de Leeuw FE , Debette S , Frayne R , Jouvent E , Rost NS , Ter Telgte A , Al-Shahi Salman R , Backes WH , Bae HJ , Brown R , Chabriat H , De Luca A , deCarli C , Dewenter A , Doubal FN , Ewers M , Field TS , Ganesh A , Greenberg S , Helmer KG , Hilal S , Jochems ACC , Jokinen H , Kuijf H , Lam BYK , Lebenberg J , MacIntosh BJ , Maillard P , Mok VCT , Pantoni L , Rudilosso S , Satizabal CL , Schirmer MD , Schmidt R , Smith C , Staals J , Thrippleton MJ , van Veluw SJ , Vemuri P , Wang Y , Werring D , Zedde M , Akinyemi RO , Del Brutto OH , Markus HS , Zhu YC , Smith EE , Dichgans M , Wardlaw JM . Neuroimaging standards for research into small vessel disease: advances since 2013. Lancet Neurol, 2023, 22: 602- 618.
doi: 10.1016/S1474-4422(23)00131-X
|
2 |
Pasi M , Cordonnier C . Clinical relevance of cerebral small vessel diseases. Stroke, 2020, 51: 47- 53.
doi: 10.1161/STROKEAHA.119.024148
|
3 |
Gutierrez J , Turan TN , Hoh BL , Chimowitz MI . Intracranial atherosclerotic stenosis: risk factors, diagnosis, and treatment. Lancet Neurol, 2022, 21: 355- 368.
doi: 10.1016/S1474-4422(21)00376-8
|
4 |
Zhang DP , Yin S , Zhang HL , Li D , Song B , Liang JX . Association between intracranial arterial dolichoectasia and cerebral small vessel disease and its underlying mechanisms. J Stroke, 2020, 22: 173- 184.
doi: 10.5853/jos.2019.02985
|
5 |
Lopez-Navarro ER , Gutierrez J . Metalloproteinases and their inhibitors in neurological disease. Naunyn Schmiedebergs Arch Pharmacol, 2022, 395: 27- 38.
doi: 10.1007/s00210-021-02188-x
|
6 |
Marquez-Romero JM , Díaz-Molina R , Hernández-Curiel BC , Bonifacio-Delgadillo DM , Prado-Aguilar CA . Matrix metalloproteinase-2 and matrix metalloproteinase-9 serum levels in patients with vertebrobasilar dolichoectasia with and without stroke: case-control study. Neuroradiology, 2022, 64: 1187- 1193.
doi: 10.1007/s00234-021-02869-7
|
7 |
Nixon AM , Gunel M , Sumpio BE . The critical role of hemodynamics in the development of cerebral vascular disease. J Neurosurg, 2010, 112: 1240- 1253.
doi: 10.3171/2009.10.JNS09759
|
8 |
Wang J , Ji J , Qiu J , Wang Y . Incompleteness of circle of Willis and silent brain infarction in patients with internal carotid artery stenosis. J Clin Neurosci, 2022, 98: 73- 77.
doi: 10.1016/j.jocn.2022.02.001
|
9 |
Ye H , Wu X , Yan J , Wang J , Qiu J , Wang Y . Completeness of circle of Willis and white matter hyperintensities in patients with severe internal carotid artery stenosis. Neurol Sci, 2019, 40: 509- 514.
doi: 10.1007/s10072-018-3683-9
|
10 |
Bertulli L , Robert T . Embryological development of the human cranio-facial arterial system: a pictorial review. Surg Radiol Anat, 2021, 43: 961- 973.
doi: 10.1007/s00276-021-02684-y
|
11 |
Leng X , Leung TW . Collateral flow in intracranial atherosclerotic disease. Transl Stroke Res, 2023, 14: 38- 52.
doi: 10.1007/s12975-022-01042-3
|
12 |
Qiao X , Duan J , Zhang N , Duan Y , Wang X , Pei Y , Xu Z , Yang B , Qi M , Li J . Risk factors of impaired perfusion in patients with symptomatic internal carotid artery steno-occlusive disease. Front Neurol, 2022, 13: 801413.
doi: 10.3389/fneur.2022.801413
|
13 |
Zhang B , Wang G , Gao Y , Tan H , Wang P . Influence of the integrity of circle of Willis on asymptomatic or mild patients with first diagnosed chronic internal carotid artery occlusion. Eur J Radiol, 2023, 165: 110954.
doi: 10.1016/j.ejrad.2023.110954
|
14 |
Hendrikse J , Eikelboom BC , van der Grond J . Magnetic resonance angiography of collateral compensation in asymptomatic and symptomatic internal carotid artery stenosis. J Vasc Surg, 2002, 36: 799- 805.
doi: 10.1067/mva.2002.127346
|
15 |
Zarrinkoob L , Wåhlin A , Ambarki K , Birgander R , Eklund A , Malm J . Blood flow lateralization and collateral compensatory mechanisms in patients with carotid artery stenosis. Stroke, 2019, 50: 1081- 1088.
doi: 10.1161/STROKEAHA.119.024757
|
16 |
Hendrikse J , van Raamt AF , van der Graaf Y , Mali WP , van der Grond J . Distribution of cerebral blood flow in the circle of Willis. Radiology, 2005, 235: 184- 189.
doi: 10.1148/radiol.2351031799
|
17 |
Zheng R , Han Q , Hong W , Yi X , He B , Liu Y . Hemodynamic characteristics and mechanism for intracranial aneurysms initiation with the circle of Willis anomaly. Comput Methods Biomech Biomed Engin, 2023, 20: 1- 9.
|
18 |
Xu J , Yu Y , Wu X , Wu Y , Jiang C , Wang S , Huang Q , Liu J . Morphological and hemodynamic analysis of mirror posterior communicating artery aneurysms. PLoS One, 2013, 8: e55413.
doi: 10.1371/journal.pone.0055413
|
19 |
Muskat JC , Rayz VL , Goergen CJ , Babbs CF . Hemodynamic modeling of the circle of Willis reveals unanticipated functions during cardiovascular stress. J Appl Physiol (1985), 2021, 131: 1020- 1034.
doi: 10.1152/japplphysiol.00198.2021
|
20 |
Hindenes LB , Håberg AK , Johnsen LH , Mathiesen EB , Robben D , Vangberg TR . Variations in the Circle of Willis in a large population sample using 3D TOF angiography: the Tromsø study. PLoS One, 2020, 15: e0241373.
doi: 10.1371/journal.pone.0241373
|
21 |
van den Brink H , Doubal FN , Duering M . Advanced MRI in cerebral small vessel disease. Int J Stroke, 2023, 18: 28- 35.
doi: 10.1177/17474930221091879
|
22 |
Gaidzik F , Pathiraja S , Saalfeld S , Stucht D , Speck O , Thévenin D , Janiga G . Hemodynamic data assimilation in a subject-specific circle of Willis geometry. Clin Neuroradiol, 2021, 31: 643- 651.
doi: 10.1007/s00062-020-00959-2
|
23 |
Zhou S, Qiao Y, Zhou X, Wasserman BA, Caughey MC. Detection of dolichoectasia and atherosclerosis by automated MRA tortuosity metrics in a population-based study[J]. J Magn Reson Imaging, 2023. [Epub ahead of print]
|
24 |
Dumais F , Caceres MP , Janelle F , Seifeldine K , Arès-Bruneau N , Gutierrez J , Bocti C , Whittingstall K . eICAB: a novel deep learning pipeline for Circle of Willis multiclass segmentation and analysis. Neuroimage, 2022, 260: 119425.
doi: 10.1016/j.neuroimage.2022.119425
|
25 |
Yu L , Xinmiao Z , Yawei W , Wentao F , Jing J , Zhunjun S , Bitian W , Yongjun W , Yubo F . Effects of abnormal vertebral arteries and the circle of Willis on vertebrobasilar dolichoectasia: a multi-scale simulation study. Clin Biomech (Bristol, Avon), 2023, 101: 105853.
doi: 10.1016/j.clinbiomech.2022.105853
|
26 |
Wu TC , Chen TY , Ko CC , Chen JH , Lin CP . Correlation of internal carotid artery diameter and carotid flow with asymmetry of the circle of Willis. BMC Neurol, 2020, 20: 251.
doi: 10.1186/s12883-020-01831-z
|
27 |
Gutierrez J , Sultan S , Bagci A , Rundek T , Alperin N , Elkind MS , Sacco RL , Wright CB . Circle of Willis configuration as a determinant of intracranial dolichoectasia. Cerebrovasc Dis, 2013, 36: 446- 453.
doi: 10.1159/000356347
|
28 |
Takeuchi M , Miwa K , Tanaka M , Zhou Y , Todo K , Sasaki T , Sakaguchi M , Kitagawa K , Mochizuki H . A 9-year longitudinal study of basilar artery diameter. J Am Heart Assoc, 2019, 8: e011154.
doi: 10.1161/JAHA.118.011154
|
29 |
Omran SS , Khasiyev F , Zhang C , Rundek T , Sacco RL , Wright CB , Elkind MSV , Gutierrez J . Anatomical effects on the relationship between brain arterial diameter and length: the Northern Manhattan Study. J Neuroimaging, 2022, 32: 735- 743.
doi: 10.1111/jon.12969
|
30 |
Sho E , Sho M , Singh TM , Nanjo H , Komatsu M , Xu C , Masuda H , Zarins CK . Arterial enlargement in response to high flow requires early expression of matrix metalloproteinases to degrade extracellular matrix. Exp Mol Pathol, 2002, 73: 142- 153.
doi: 10.1006/exmp.2002.2457
|
31 |
Li J , Zheng L , Yang WJ , Sze-To CY , Leung TW , Chen XY . Plaque wall distribution pattern of the atherosclerotic middle cerebral artery associates with the circle of Willis completeness. Front Neurol, 2021, 11: 599459.
doi: 10.3389/fneur.2020.599459
|
32 |
Wang H , Shen L , Zhao C , Liu S , Wu G , Wang H , Wang B , Zhu J , Du J , Gong Z , Chai C , Xia S . The incomplete circle of Willis is associated with vulnerable intracranial plaque features and acute ischemic stroke. J Cardiovasc Magn Reson, 2023, 25: 23.
doi: 10.1186/s12968-023-00931-2
|
33 |
Xu M , Guo W , Rascle L , Mechtouff L , Nighoghossian N , Eker O , Wang L , Henninger N , Mikati AG , Zhang S , Wu B , Liu M . Leukoaraiosis distribution and cerebral collaterals: a systematic review and meta-analysis. Front Neurol, 2022, 13: 869329.
doi: 10.3389/fneur.2022.869329
|
34 |
Feng L , Zhai FF , Li ML , Zhou LX , Ni J , Yao M , Jin ZY , Cui LY , Zhang SY , Han F , Zhu YC . Association between anatomical variations of the circle of Willis and covert vascular brain injury in the general population. Cerebrovasc Dis, 2023, 52: 480- 486.
doi: 10.1159/000527432
|
35 |
Miyazawa N , Shinohara T , Yamagata Z . Association of incompleteness of the anterior part of the circle of Willis with the occurrence of lacunes in the basal ganglia. Eur J Neurol, 2011, 18: 1358- 1360.
doi: 10.1111/j.1468-1331.2011.03400.x
|
36 |
Xu M , Wu Q , Cheng Y , Zhang S , Tao W , Zhang S , Wang D , Liu M , Wu B . Circle of Willis morphology in primary intracerebral hemorrhage. Transl Stroke Res, 2022, 13: 736- 744.
doi: 10.1007/s12975-022-00997-7
|
37 |
Del Brutto OH , Mera RM , Zambrano M , Lama J . Incompleteness of the Circle of Willis correlates poorly with imaging evidence of small vessel disease: a population-based study in rural Ecuador (the Atahualpa project). J Stroke Cerebrovasc Dis, 2015, 24: 73- 77.
doi: 10.1016/j.jstrokecerebrovasdis.2014.07.036
|
38 |
Aminuddin N , Achuthan A , Ruhaiyem NIR , Che Mohd Nassir CMN , Idris NS , Mustapha M . Reduced cerebral vascular fractal dimension among asymptomatic individuals as a potential biomarker for cerebral small vessel disease. Sci Rep, 2022, 12: 11780.
doi: 10.1038/s41598-022-15710-9
|