[1] Chinnaiyan P, Kensicki E, Bloom G, Prabhu A, Sarcar B, Kahali S, Eschrich S, Qu X, Forsyth P, Gillies R. The metabolomic signature of malignant glioma reflects accelerated anabolic metabolism[J]. Cancer Res, 2012, 72:5878-5888. [2] Reina-Campos M, Moscat J, Diaz-Meco M. Metabolism shapes the tumor microenvironment[J]. Curr Opin Cell Biol, 2017, 48:47-53. [3] Hambardzumyan D, Bergers G. Glioblastoma:defining tumor niches[J]. Trends Cancer, 2015, 1:252-265. [4] Tejero R, Huang Y, Katsyv I, Kluge M, Lin JY, Tome-Garcia J, Daviaud N, Wang Y, Zhang B, Tsankova NM, Friedel CC, Zou H, Friedel RH. Gene signatures of quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche microenvironment[J]. EBioMedicine, 2019, 42:252-269. [5] Plaks V, Kong N, Werb Z. The cancer stem cell niche:how essential is the niche in regulating stemness of tumor cells[J]?Cell Stem Cell, 2015, 16:225-238. [6] Brandenburg S, Müller A, Turkowski K, Radev YT, Rot S, Schmidt C, Bungert AD, Acker G, Schorr A, Hippe A, Miller K, Heppner FL, Homey B, Vajkoczy P. Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors[J]. Acta Neuropathol, 2016, 131:365-378. [7] Ngwa VM, Edwards DN, Philip M, Chen J. Microenvironmental metabolism regulates antitumor immunity[J]. Cancer Res, 2019, 79:4003-4008. [8] Perng P, Lim M. Immunosuppressive mechanisms of malignant gliomas:parallels at non-CNS sites[J]. Front Oncol, 2015, 5:153. [9] Prinz M, Priller J. The role of peripheral immune cells in the CNS in steady state and disease[J]. Nat Neurosci, 2017, 20:136-144. [10] Kuratsu J, Yoshizato K, Yoshimura T, Leonard EJ, Takeshima H, Ushio Y. Quantitative study of monocyte chemoattractant protein-1(MCP-1) in cerebrospinal fluid and cyst fluid from patients with malignant glioma[J]. J Natl Cancer Inst, 1993, 85:1836-1839. [11] Wang T, Liu G, Wang R. The intercellular metabolic interplay between tumor and immune cells[J]. Front Immunol, 2014, 5:358. [12] Kostianovsky AM, Maier LM, Anderson RC, Bruce JN, Anderson DE. Astrocytic regulation of human monocytic/microglial activation[J]. J Immunol, 2008, 181:5425-5432. [13] Terrén I, Orrantia A, Vitallé J, Zenarruzabeitia O, Borrego F. NK cell metabolism and tumor microenvironment[J]. Front Immunol, 2019, 10:2278. [14] Yi L, Xiao H, Xu M, Ye X, Hu J, Li F, Li M, Luo C, Yu S, Bian X, Feng H. Glioma-initiating cells:a predominant role in microglia/macrophages tropism to glioma[J]. J Neuroimmunol, 2011, 232(1/2):75-82. [15] Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect:the metabolic requirements of cell proliferation[J]. Science, 2009, 324:1029-1033. [16] Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence[J]. Immunity, 2013, 38:633-643. [17] Hasmim M, Noman MZ, Messai Y, Bordereaux D, Gros G, Baud V, Chouaib S. Cutting edge:hypoxia-induced nanog favors the intratumoral infiltration of regulatory T cells and macrophages via direct regulation of TGF-β1[J]. J Immunol, 2013, 191:5802-5806. [18] Cirillo A, Di Salle A, Petillo O, Melone MA, Grimaldi G, Bellotti A, Torelli G, De'Santi MS, Cantatore G, Marinelli A, Galderisi U, Peluso G. High grade glioblastoma is associated with aberrant expression of ZFP57, a protein involved in gene imprinting, and of CPT1A and CPT1C that regulate fatty acid metabolism[J]. Cancer Biol Ther, 2014, 15:735-741. [19] Lin H, Patel S, Affleck VS, Wilson I, Turnbull DM, Joshi AR, Maxwell R, Stoll EA. Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells[J]. Neuro Oncol, 2017, 19:43-54. [20] Pei Z, Sun P, Huang P, Lal B, Laterra J, Watkins PA. Acyl-CoA synthetase VL3 knockdown inhibits human glioma cell proliferation and tumorigenicity[J]. Cancer Res, 2009, 69:9175-9182. [21] Villa GR, Hulce JJ, Zanca C, Bi J, Ikegami S, Cahill GL, Gu Y, Lum KM, Masui K, Yang H, Rong X, Hong C, Turner KM, Liu F, Hon GC, Jenkins D, Martini M, Armando AM, Quehenberger O, Cloughesy TF, Furnari FB, Cavenee WK, Tontonoz P, Gahman TC, Shiau AK, Cravatt BF, Mischel PS. An LXR-cholesterol axis creates a metabolic co-dependency for brain cancers[J]. Cancer Cell, 2016, 30:683-693. [22] Joki T, Heese O, Nikas DC, Bello L, Zhang J, Kraeft SK, Seyfried NT, Abe T, Chen LB, Carroll RS, Black PM. Expression of cyclooxygenase 2(COX-2) in human glioma and in vitro inhibition by a specific COX-2 inhibitor, NS-398[J]. Cancer Res, 2000, 60:4926-4931. [23] Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, Jugold M, Guillemin GJ, Miller CL, Lutz C, Radlwimmer B, Lehmann I, von Deimling A, Wick W, Platten M. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor[J]. Nature, 2011, 478:197-203. [24] Rath M, Müller I, Kropf P, Closs EI, Munder M. Metabolism via arginase or nitric oxide synthase:two competing arginine pathways in macrophages[J]. Front Immunol, 2014, 5:532. [25] Ogunrinu TA, Sontheimer H. Hypoxia increases the dependence of glioma cells on glutathione[J]. J Biol Chem, 2010, 285:37716-37724. [26] Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, Tonc E, Schreiber RD, Pearce EJ, Pearce EL. Metabolic competition in the tumor microenvironment is a driver of cancer progression[J]. Cell, 2015, 162:1229-1241. [27] Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, Tsui YC, Cui G, Micevic G, Perales JC, Kleinstein SH, Abel ED, Insogna KL, Feske S, Locasale JW, Bosenberg MW, Rathmell JC, Kaech SM. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses[J]. Cell, 2015, 162:1217-1228. [28] Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, Wei S, Crespo J, Wan S, Vatan L, Szeliga W, Shao I, Wang Y, Liu Y, Varambally S, Chinnaiyan AM, Welling TH, Marquez V, Kotarski J, Wang H, Wang Z, Zhang Y, Liu R, Wang G, Zou W. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction[J]. Nat Immunol, 2016, 17:95-103. [29] Li W, Tanikawa T, Kryczek I, Xia H, Li G, Wu K, Wei S, Zhao L, Vatan L, Wen B, Shu P, Sun D, Kleer C, Wicha M, Sabel M, Tao K, Wang G, Zou W. Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific CEBPB isoform in triple-negative breast cancer[J]. Cell Metab, 2018, 28:87-103. [30] Li L, Liu X, Sanders KL, Edwards JL, Ye J, Si F, Gao A, Huang L, Hsueh EC, Ford DA, Hoft DF, Peng G. TLR8-mediated metabolic control of human treg function:a mechanistic target for cancer immunotherapy[J]. Cell Metab, 2019, 29:103-123. [31] Maj T, Wang W, Crespo J, Zhang H, Wang W, Wei S, Zhao L, Vatan L, Shao I, Szeliga W, Lyssiotis C, Liu JR, Kryczek I, Zou W. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor[J]. Nat Immunol, 2017, 18:1332-1341. [32] Altman BJ, Stine ZE, Dang CV. From Krebs to clinic:glutamine metabolism to cancer therapy[J]. Nat Rev Cancer, 2016, 16:749. [33] Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism:the essential role of the nonessential amino acid, glutamin[J]. EMBO J, 2017, 36:1302-1315. [34] Kinnaird A, Zhao S, Wellen KE, Michelakis ED. Metabolic control of epigenetics in cancer[J]. Nat Rev Cancer, 2016, 16:694-707. [35] Xia H, Wang W, Crespo J, Kryczek I, Li W, Wei S, Bian Z, Maj T, He M, Liu RJ, He Y, Rattan R, Munkarah A, Guan JL, Zou W. Suppression of FIP200 and autophagy by tumor-derived lactate promotes naïve T cell apoptosis and affects tumor immunity[J]. Sci Immunol, 2017, 2:pii:eaan4631. [36] Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid[J]. Nature, 2014, 513:559-563. [37] Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer[J]. Cell Metab, 2013, 18:153-161. [38] Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis[J]. Cell, 2010, 140:49-61. [39] Zhai L, Spranger S, Binder DC, Gritsina G, Lauing KL, Giles FJ, Wainwright DA. Molecular pathways:targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy[J]. Clin Cancer Res, 2015, 21:5427-5433. [40] Hsu YL, Hung JY, Chiang SY, Jian SF, Wu CY, Lin YS, Tsai YM, Chou SH, Tsai MJ, Kuo PL. Lung cancer-derived galectin-1 contributes to cancer associated fibroblast-mediated cancer progression and immune suppression through TDO2/kynurenine axis[J]. Oncotarget, 2016, 7:27584-27598. [41] Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield C. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells[J]. J Immunol, 2010, 185:3190-3198. [42] Dagenais-Lussier X, Aounallah M, Mehraj V, El-Far M, Tremblay C, Sekaly RP, Routy JP, van Grevenynghe J. Kynurenine reduces memory CD4 T-cell survival by interfering with interleukin-2 signaling early during HIV-1 infection[J]. J Virol, 2016, 90:7967-7979. |