[1] Garcia-gonzalez V, Diaz-villanueva JF, Galindo-hernandez O, et al. Ceramide metabolism balance, a multifaceted factor in critical steps of breast cancer development[J]. Int J Mol Sci, 2018, 19: 2527-2550. [2] Leonardini A, D'oria R, Incalza MA, et al. GLP-1 receptor activation inhibits palmitate-induced apoptosis via ceramide in human cardiac progenitor cells[J]. J Clin Endocrinol Metab, 2017, 102: 4136-4147. [3] Miller LG, Young JA, Ray SK, et al. Sphingosine toxicity in EAE and MS: evidence for ceramide generation via serine-palmitoyltransferase activation[J]. Neurochem Res, 2017, 42: 2755-2768. [4] Hannun YA, Obeid LM. Sphingolipids and their meta-bolism in physiology and disease[J]. Nat Rev Mol Cell Biol, 2018, 19: 175-191. [5] Ahn EH, Yang H, Hsieh CY, et al. Evaluation of chemotherapeutic and cancer-protective properties of sphingosine and C2-ceramide in a human breast stem cell derived carcinogenesis model[J]. Int J Oncol, 2019, 54: 655-664. [6] 慕静静,曾耀英,黄秀艳,等. C2-神经酰胺对小鼠T淋巴细胞体外活化和增殖的影响[J]. 暨南大学学报 (医学版), 2009, 30: 133-138. [7] Karsai G, Kraft F, Haag N, et al. DEGS1-associated aberrant sphingolipid metabolism impairs nervous system function in humans[J]. J Clin Invest, 2019, 129: 1229-1239. [8] Chang YC, Fong Y, Tsai EM, et al. Exogenous C(8)-ceramide induces apoptosis by overproduction of ROS and the switch of superoxide dismutases SOD1 to SOD2 in human lung cancer cells[J]. Int J Mol Sci, 2018, 19: 3010-3022. [9] NiaudetI C, Bonnaud S, Guillonneau M, et al. Plasma membrane reorganization links acid sphingomyelinase/ceramide to p38 MAPK pathways in endothelial cells apoptosis[J]. Cell Signal, 2017, 33: 10-21. [10] Mignard V, Dubois N, Lanoé D, et al. Sphingolipid distribution at mitochondria-associated membranes (MAMs) upon induction of apoptosis[J]. J Lipid Res, 2020, 61: 1025-1037. [11] Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy[J]. Nat Rev Cancer, 2018, 18: 33-50. [12] Scheiblich H, Schlutter A, Golenbock DT, et al. Activa-tion of the NLRP3 inflammasome in microglia: the role of ceramide[J]. J Neurochem, 2017, 143: 534-550. [13] Albeituni S, Stiban J. Roles of ceramides and other sphingolipids in immune cell function and inflammation[J]. Adv Exp Med Biol, 2019, 1161: 169-191. [14] Brittain EL, Talati M, Fessel JP, et al. Fatty acid metabolic defects and right ventricular lipotoxicity in human pulmonary arterial hypertension[J]. Circulation, 2016, 133: 1936-1944. [15] Granzotto A, Bomba M, Castelli V, et al. Inhibition of de novo ceramide biosynthesis affects aging phenotype in an in vitro model of neuronal senescence[J]. Aging (Albany NY), 2019, 11: 6336-6357. [16] Talati M, Hemnes A. Fatty acid metabolism in pulmonary arterial hypertension: role in right ventricular dysfunction and hypertrophy[J]. Pulm Circ, 2015, 5: 269-278. [17] Hemnes AR, Fessel JP, Chen X, et al. BMPR2 dysfunction impairs insulin signaling and glucose homeostasis in cardiomyocytes[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318: L429-L1441. [18] Pandolfi R, Barreira B, Moreno E, et al. Role of acid sphingomyelinase and IL-6 as mediators of endotoxin-induced pulmonary vascular dysfunction[J]. Thorax, 2017, 72: 460-471. [19] Andrieu G, Ledoux A, Branka S, et al. Sphingosine 1-phosphate signaling through its receptor S1P(5) promotes chromosome segregation and mitotic progression[J]. Sci Signal, 2017, 10:4007-4018. [20] Macritchie N, Volpert G, Al washih M, et al. Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension[J]. Cell Signal, 2016, 28: 946-955. |