[1] |
Yu FH, Huang KJ, Wang CT. HIV-1 mutant assembly, processing and infectivity expresses pol independent of gag[J]. Viruses, 2020, 12:54-59.
|
[2] |
Lee S, Cobrinik D. Improved third-generation lentiviral packaging with pLKO.1C vectors[J]. Biotechniques 2020, 68:349-352.
|
[3] |
Yudovich D, Backstrom A, Schmiderer L, et al. Comb-ined lentiviral- and RNA-mediated CRISPR/Cas9 delivery for efficient and traceable gene editing in human hematopoietic stem and progenitor cells[J]. Sci. Rep, 2020, 10:22393.doi: 10.1038/s41598-020-79724-x.
|
[4] |
Nualkaew T, Sii-Felice K, Giorgi M, et al. Coordinated β-globin expression and α2-globin reduction in a multiplex lentiviral[J]. Mol Ther, 29:2841-2853.
|
[5] |
于榛, 仝帅, 白玥, 等. 优化第三代慢病毒载体稳定表达β-珠蛋白治疗β-地中海贫血的研究[J]. 中国实验血液学杂志, 2022, 30:844-850.
|
[6] |
Lamsfus-Calle A, Daniel-Moreno A, Urena-Bailen G, et al. Hematopoietic stem cell gene therapy: the optimal use of lentivirus and gene editing approaches[J]. Blood Rev, 2020, 40:100641.doi: 10.1016/j.blre.2019.100641. Epub 2019 Nov 15.
|
[7] |
Morgan RA, Unti MJ, Aleshe B, et al. Improved titer and gene transfer by lentiviral vectors using novel, small beta-globin locus control region elements[J]. Mol Ther, 2020, 28:328-340.
|
[8] |
Ouyang WJ, Dong GY, Zhao WH, et al. Restoration of beta-globin expression with optimally designed lentiviral vector for beta-thalassemia treatment in chinese patients[J]. Hum Gene Ther, 2021, 32:481-494.
|
[9] |
Schott JW, Leon-Rico D, Ferreira CB, et al. Enhancing lentiviral and alpharetroviral transduction of human hematopoietic stem cells for clinical application[J]. Mol Ther Methods Clin Dev, 2019, 14:134-147.
|
[10] |
Ozog S, Timberlake ND, Hermann K, et al. Resveratrol trimer enhances gene delivery to hematopoietic stem cells by reducing antiviral restriction at endosomes[J]. Blood, 2019, 134:1298-1311.
|
[11] |
Locatelli F, Thompson AA, Kwiatkowski JL, et al. Betibeglogene autotemcel gene therapy for non-beta(0)/beta(0) genotype beta-thalassemia[J]. N Engl J Med, 386:415-427.
|
[12] |
Magrin E, Semeraro M, Hebert N, et al. Long-term outcomes of lentiviral gene therapy for the β-hemoglobinopathies: the HGB-205 trial[J]. Nat Med, 2022, 28:81-88.
|
[13] |
Hongeng S, Anurathapan U, Songdej D, et al. Wild-type HIV infection after treatment with lentiviral gene therapy for beta-thalassemia[J]. Blood Adv, 2021, 5:2701-2706.
|
[14] |
Tucci F, Galimberti S, Naldini L, et al. A systematic review and meta-analysis of gene therapy with hematopoietic stem and progenitor cells for monogenic disorders[J]. Nat Commun, 2022, 13:1315.doi: 10.1038/s41467-022-28762-2.
|
[15] |
Cosenza LC, Zuccato C, Zurlo M, et al. Co-treatment of erythroid cells from beta-thalassemia patients with CRISPR-Cas9-based beta(0)39-globin gene editing and induction of fetal hemoglobin[J]. Genes, 2022, 13:1727.doi: 10.3390/genes13101727.
|
[16] |
Ling S, Yang S, Hu X, et al. Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA [J]. Nat Biomed Eng, 2021, 5:144-156.
|
[17] |
Ortinski PI, O′donovan B, Dong X, et al. Integrase-deficient lentiviral vector as an all-in-one platform for highly efficient CRISPR/Cas9-mediated gene editing[J]. Mol Ther Methods Clin Dev, 2017, 5:153-164.
|
[18] |
Li QY, Gao YM, Wang HF. CRISPR-based tools for fighting rare diseases[J]. Life-Basel, 2022, 12:1968.doi: 10.3390/life12121968.
|
[19] |
Kwon J, Kim M, Hwang W, et al. Extru-seq: a method for predicting genome-wide Cas9 off-target sites with[J]. Genome Biol, 2023, 24:4.doi: 10.1186/s13059-022-02842-4.
|
[20] |
Apolonia L. The old and the new: prospects for non-Integrating lentiviral vector technology[J]. Viruses-Basel, 2020, 12:1016.doi: 10.3390/v12101103.
|
[21] |
Gee P, Lung MSY, Okuzaki Y, et al. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping[J]. Nat Commun, 2020, 11:1334.doi: 10.1038/s41467-020-14957-y.
|
[22] |
Mangeot PE, Risson V, Fusil F, et al. Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins[J]. Nat Commun, 2019, 10:45.doi: 10.1038/s41467-018-07845-z.
|
[23] |
Indikova I, Indik S. Highly efficient ‘hit-and-run’ genome editing with unconcentrated lentivectors carrying Vpr.Prot.Cas9 protein produced from RRE-containing transcripts[J]. Nucleic Acids Res, 2020, 48:8178-8187.
|
[24] |
Uchida N, Ferrara F, Drysdale CM, et al. Sustained fetal hemoglobin induction in vivo is achieved by BCL11A interference and coexpressed truncated erythropoietin receptor[J]. Sci Transl Med, 2021, 13:eabb0411.doi: 10.1126/scitranslmed.abb0411.
|
[25] |
Liu BY, Brendel C, Vinjamur DS, et al. Development of a double shmiR lentivirus effectively targeting both BCL11A and ZNF410 for enhanced induction of fetal hemoglobin to treat ll-hemoglobinopathies br[J]. Mol Ther, 2022, 30:2693-2708.
|