Basic & Clinical Medicine ›› 2024, Vol. 44 ›› Issue (8): 1080-1087.doi: 10.16352/j.issn.1001-6325.2024.08.1080
• Special Issues:Pulmonary Hypertension • Previous Articles Next Articles
QIAN Xifeng1, HUA Lu1,2*
Received:
2024-06-06
Revised:
2024-06-21
Online:
2024-08-05
Published:
2024-07-24
Contact:
*ethannan@126.com
CLC Number:
QIAN Xifeng, HUA Lu. Inflammatory cells and vascular remodeling in pulmonary arterial hypertension[J]. Basic & Clinical Medicine, 2024, 44(8): 1080-1087.
[1] 中华医学会呼吸病学分会肺栓塞与肺血管病学组, 中国医师协会呼吸医师分会肺栓塞与肺血管病工作委员会, 全国肺栓塞与肺血管病防治协作组, 等. 中国肺动脉高压诊断与治疗指南(2021版)[J]. 中华医学杂志, 2021, 101:11-51. [2] Leber L, Beaudet A, Muller A. Epidemiology of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: identification of the most accurate estimates from a systematic literature review[J]. Pulm Circ, 2021, 11:2045894020977300. doi:10.1177/2045894020977300. [3] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2022概要[J]. 中国循环杂志, 2023, 38:583-612. [4] Huertas A, Tu L, Humbert M, et al. Chronic inflamma-tion within the vascular wall in pulmonary arterial hypertension: more than a spectator[J]. Cardiovasc Res, 2020, 116:885-893. [5] Hu Y, Chi L, Kuebler WM, et al. Perivascular inflammation in pulmonary arterial hypertension[J]. Cells, 2020, 9:2338. doi:10.3390/cells9112338. [6] Wang RR, Yuan TY, Wang JM, et al. Immunity and inflammation in pulmonary arterial hypertension: from pathophysiology mechanisms to treatment perspective[J]. Pharmacol Res, 2022, 180:106238. doi:10.1016/j.phrs.2022.106238. [7] Maston LD, Jones DT, Giermakowska W, et al. Central role of T helper 17 cells in chronic hypoxia-induced pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 312:L609-L624. [8] Chen G, Zuo S, Tang J, et al. Inhibition of CRTH2-mediated Th2 activation attenuates pulmonary hypertension in mice[J]. J Exp Med, 2018, 215:2175-2195. [9] Xiao Q, Li X, Li Y, et al. Biological drug and drug delivery-mediated immunotherapy[J]. Acta Pharm Sin B, 2021, 11:941-960. [10] Tian W, Jiang SY, Jiang X, et al. The role of regulatory T cells in pulmonary arterial hypertension[J]. Front Immunol, 2021, 12:684657. doi:10.3389/fimmu.2021.684657. [11] Esensten JH, Muller YD, Bluestone JA, et al. Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: the next frontier[J]. J Allergy Clin Immunol, 2018, 142:1710-1718. [12] Ferreira LMR, Muller YD, Bluestone JA, et al. Next-generation regulatory T cell therapy[J]. Nat Rev Drug Discov, 2019, 18:749-769. [13] Tamura Y, Phan C, Tu L, et al. Ectopic upregulation of membrane-bound IL6R drives vascular remodeling in pulmonary arterial hypertension[J]. J Clin Invest, 2018, 128:1956-1970. [14] Toshner M, Church C, Harbaum L, et al. Mendelian randomisation and experimental medicine approaches to interleukin-6 as a drug target in pulmonary arterial hypertension[J]. Eur Respir J, 2022, 59:2002463. doi:10.1183/13993003.02463-2020. [15] Yang PS, Kim DH, Lee YJ, et al. Glycyrrhizin, inhibitor of high mobility group box-1, attenuates monocrotaline-induced pulmonary hypertension and vascular remodeling in rats[J]. Respir Res, 2014, 17:142. doi:10.1186/s12931-014-0148-4. [16] Parpaleix A, Amsellem V, Houssaini A, et al. Role of interleukin-1 receptor 1/MyD88 signalling in the development and progression of pulmonary hypertension[J]. Eur Respir J, 2016, 48:470-483. [17] Trankle CR, Canada JM, Kadariya D, et al. IL-1 blockade reduces inflammation in pulmonary arterial hypertension and right ventricular failure: a single-arm, open-label, phase IB/Ⅱ pilot study[J]. Am J Respir Crit Care Med, 2019, 199:381-384. [18] Shu T, Xing Y, Wang J. Autoimmunity in pulmonary arterial hypertension: evidence for local immunoglobulin production[J]. Front Cardiovasc Med, 2021, 8:680109. doi:10.3389/fcvm.2021.680109. [19] Marsh LM, Jandl K, Grünig G, et al. The inflammatory cell landscape in the lungs of patients with idiopathic pulmonary arterial hypertension[J]. Eur Respir J, 2018, 51:1701214. doi:10.1183/13993003.01214-2017. [20] Breitling S, Hui Z, Zabini D, et al. The mast cell-B cell axis in lung vascular remodeling and pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 312:L710-L721. [21] Colvin KL, Cripe PJ, Ivy DD, et al. Bronchus-associated lymphoid tissue in pulmonary hypertension produces pathologic autoantibodies[J]. Am J Respir Crit Care Med, 2013, 188:1126-1136. [22] Wang J, Qian J, Wang Y, et al. Serological biomarkers as risk factors of SLE-associated pulmonary arterial hypertension: a systematic review and meta-analysis[J]. Lupus, 2017, 26:1390-1400. [23] Zamanian RT, Badesch D, Chung L, et al. Safety and efficacy of B-cell depletion with rituximab for the treatment of systemic sclerosis-associated pulmonary arterial hypertension: a multicenter, double-blind, randomized, placebo-controlled trial[J]. Am J Respir Crit Care Med, 2021, 204:209-221. [24] Hennigan S, Channick RN, Silverman GJ. Rituximab treatment of pulmonary arterial hypertension associated with systemic lupus erythematosus: a case report[J]. Lupus, 2008, 17:754-756. [25] Deng L, Jian Z, Xu T, et al. Macrophagepolarization: an important candidate regulator for lung diseases[J]. Molecules, 2023, 28:2379. doi:10.3390/molecules28052379. [26] Fan Y, Hao Y, Gao D, et al. Phenotype and function of macrophage polarization in monocrotaline-induced pulmonary arterial hypertension rat model[J]. Physiol Res, 2021, 70:213-226. [27] Abid S, Marcos E, Parpaleix A, et al. CCR2/CCR5-mediated macrophage-smooth muscle cell crosstalk in pulmonary hypertension[J]. Eur Respir J, 2019, 54:1802308. doi:10.1183/13993003.02308-2018. [28] Pullamsetti SS, Savai R. Macrophage regulation during vascular remodeling: implications for pulmonary hypertension therapy[J]. Am J Respir Cell Mol Biol, 2017, 56:556-558. [29] Mamazhakypov A, Viswanathan G, Lawrie A, et al. The role of chemokines and chemokine receptors in pulmonary arterial hypertension[J]. Br J Pharmacol, 2021, 178:72-89. [30] Tian W, Jiang X, Tamosiuniene R, et al. Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension[J]. Sci Transl Med, 2013, 5:200ra117. doi:10.1126/scitranslmed.3006674. [31] Qian J, Tian W, Jiang X, et al. Leukotriene B4 activates pulmonary artery adventitial fibroblasts in pulmonary hypertension[J]. Hypertension, 2015, 66:1227-1239. [32] Tian W, Jiang X, Sung YK, et al. Leukotrienes in pulmonary arterial hypertension[J]. Immunol Res, 2014, 58:387-393. [33] Mercurio V, Cuomo A, Naranjo M, et al. Inflammatory mechanisms in the pathogenesis of pulmonary arterial hypertension: recent advances[J]. Compr Physiol, 2021, 11:1805-1829. [34] Tian W, Jiang X, Sung YK, et al. Phenotypically silent bone morphogenetic protein receptor 2 mutations predispose rats to inflammation-induced pulmonary arterial hypertension by enhancing the risk for neointimal transformation[J]. Circulation, 2019, 140:1409-1425. [35] Kosanovic D, Dahal BK, Peters DM, et al. Histological characterization of mast cell chymase in patients with pulmonary hypertension and chronic obstructive pulmonary disease[J]. Pulm Circ, 2014, 4:128-136. [36] Kwapiszewska G, Markart P, Dahal BK, et al. PAR-2 inhibition reverses experimental pulmonary hypertension[J]. Circ Res, 2012, 110:1179-1191. [37] Sismanopoulos N, Delivanis DA, Alysandratos KD, et al. IL-9 induces VEGF secretion from human mast cells and IL-9/IL-9 receptor genes are overexpressed in atopic dermatitis[J]. PLoS One, 2012, 7:e33271. doi:10.1371/journal.pone.0033271. [38] Farha S, Sharp J, Asosingh K, et al. Mast cell number, phenotype, and function in human pulmonary arterial hypertension[J]. Pulm Circ, 2012, 2:220-228. [39] Carroll-Portillo A, Cannon JL, te Riet J, et al. Mast cells and dendritic cells form synapses that facilitate antigen transfer for T cell activation[J]. J Cell Biol, 2015, 210:851-864. [40] Bulfone-Paus S, Bahri R. Mast cells as regulators of T cell responses[J]. Front Immunol, 2015, 6:394. doi:10.3389/fimmu.2015.00394. [41] Hu Y, Zabini D, Gu W, et al. The role of the human immune system in chronic hypoxic pulmonary hypertension[J]. Am J Respir Crit Care Med, 2018, 198:528-531. [42] Dahal BK, Kosanovic D, Kaulen C, et al. Involvement of mast cells in monocrotaline-induced pulmonary hypertension in rats[J]. Respir Res, 2011, 12:60. doi:10.1186/1465-9921-12-60. [43] Perros F, Dorfmüller P, Souza R, et al. Dendritic cell recruitment in lesions of human and experimental pulmonary hypertension[J]. Eur Respir J, 2007, 29:462-468. [44] Larsen KO, Yndestad A, Sjaastad I, et al. Lack of CCR7 induces pulmonary hypertension involving perivascular leukocyte infiltration and inflammation[J]. Am J Physiol Lung Cell Mol Physiol, 2011, 301:L50-L59. [45] Fleige H, Bosnjak B, Permanyer M, et al. Manifold roles of CCR7 and its ligands in the induction and maintenance of bronchus-associated lymphoid tissue[J]. Cell Rep, 2018, 23:783-795. [46] Van Uden D, Boomars K, Kool M. Dendritic cell subsets and effector function in idiopathic and connective tissue disease-associated pulmonary arterial hypertension[J]. Front Immunol, 2019, 10:11. doi:10.3389/fimmu.2019.00011. [47] Funk-Hilsdorf TC, Behrens F, Grune J, et al. Dysregu-lated immunity in pulmonary hypertension: from compa-nion to composer[J]. Front Physiol, 2022, 13:819145. doi:10.3389/fphys.2022.819145. [48] Liu X, Mayes MD, Tan FK, et al. Correlation of interferon-inducible chemokine plasma levels with disease severity in systemic sclerosis[J]. Arthritis Rheum, 2013, 65:226-235. [49] Yang T, Li ZN, Chen G, et al. Increased levels of plasma CXC-chemokine ligand 10, 12 and 16 are associated with right ventricular function in patients with idiopathic pulmonary arterial hypertension[J]. Heart Lung, 2014, 43:322-327. [50] Rose F, Hattar K, Gakisch S, et al. Increased neutrophil mediator release in patients with pulmonary hypertension--suppression by inhaled iloprost[J]. Thromb Haemost, 2003, 90:1141-1149. [51] Zaidi SH, You XM, Ciura S, et al. Overexpression of the serine elastase inhibitor elafin protects transgenic mice from hypoxic pulmonary hypertension[J]. Circulation, 2002, 105:516-521. [52] Porto BN, Stein RT. Neutrophil extracellular traps in pulmonary diseases: too much of a good thing?[J]. Front Immunol, 2016, 7:311. doi:10.3389/fimmu.2016.00311. [53] Aldabbous L, Abdul-Salam V, McKinnon T, et al. Neutrophil extracellular traps promote angiogenesis: evidence from vascular pathology in pulmonary hypertension[J]. Arterioscler Thromb Vasc Biol, 2016, 36:2078-2087. [54] Edwards AL, Gunningham SP, Clare GC, et al. Professional killer cell deficiencies and decreased survival in pulmonary arterial hypertension[J]. Respirology, 2013, 18:1271-1277. [55] Ormiston ML, Deng Y, Stewart DJ, et al. Innate immunity in the therapeutic actions of endothelial progenitor cells in pulmonary hypertension[J]. Am J Respir Cell Mol Biol, 2010, 43:546-554. [56] Ormiston ML, Chang C, Long LL, et al. Impaired natural killer cell phenotype and function in idiopathic and heritable pulmonary arterial hypertension[J]. Circulation, 2012, 126:1099-1109. |
[1] | MENG Dequan, QIN Xin, CHEN Ling, QIN Jun. Polysaccharides from Atractylodes macrocephala koidz. inhibit inflammatory response in rat model of severe pneumonia [J]. Basic & Clinical Medicine, 2024, 44(9): 1263-1268. |
[2] | JIANG Su, LYU Xinxiang, CUI Yanhong, LYU Liting, LI Dongxia. Therapeutic effect of evodiamine on atopic dermatitis in rat models [J]. Basic & Clinical Medicine, 2024, 44(9): 1256-1262. |
[3] | GAO Yidan, JIANG Xuehan, ZHANG Hong, YANG Peiran. Development of novel therapies targeting at dysregulated signaling pathways in pulmonary arterial hypertension [J]. Basic & Clinical Medicine, 2024, 44(8): 1088-1093. |
[4] | GAO Chao, ZHANG Runhan, WANG Wei, ZHAO Manting, JIAO Yan, LI Zhe. Effect of artesunate on neuroinflammation in depressed mouse model by regulating cGAS-STING signaling pathway [J]. Basic & Clinical Medicine, 2024, 44(8): 1126-1132. |
[5] | SHENG Qi, TONG Jin. The CXCL10/CXCR3 axis in acute respiratory distress syndrome [J]. Basic & Clinical Medicine, 2024, 44(6): 892-896. |
[6] | YE Yuxin, LI Huixian, YAN Tao, ZHANG Yun, SUN Yulin. Quantitative analysis of trace-level proteins for assessing inflammation through clinical sampling [J]. Basic & Clinical Medicine, 2024, 44(5): 690-698. |
[7] | LIANG Huiyong, WEI Qiuhui, DING Ya, PENG Xiaoqing, YAO Jing, SU Qijian. Cordycepin inhibits proliferation of human keratinocyte cell line HaCaT induced by TNF-α [J]. Basic & Clinical Medicine, 2023, 43(9): 1390-1393. |
[8] | CHEN Xinjun, WANG Qinyu, CHEN Le, GU Chunyu, WU Zhuo. Pterostilbene reduces paraquat-induced pulmonary fibrosis in rat model [J]. Basic & Clinical Medicine, 2023, 43(9): 1383-1389. |
[9] | JIANG Luojia, XU Haibo. Short-chain fatty acid sodium acetate reduces hypoxia- reoxygenation induced injury of human renal tubular epithelial cell line HK2 [J]. Basic & Clinical Medicine, 2023, 43(8): 1208-1214. |
[10] | REN Peng, CHEN Yali, ZHANG Xianwen. Olfactory disorder in Parkinson's disease [J]. Basic & Clinical Medicine, 2023, 43(6): 994-997. |
[11] | LEI Xingyu, FENG Xuesong, CHAO Xu. Progress on the role of 11β-HSD1 in inflammation,development of hepatocellular carcinoma and immunity [J]. Basic & Clinical Medicine, 2023, 43(5): 837-841. |
[12] | SUN Ying, YANG Zhian, HE Yao, YU Qin. Research progress on the role of HMGB1 signal pathway in bronchial asthma [J]. Basic & Clinical Medicine, 2023, 43(4): 690-694. |
[13] | LI Liya, QIN Pei. Advances of researches on astrocytes in inflammatory diseases of central nervous system [J]. Basic & Clinical Medicine, 2023, 43(4): 665-668. |
[14] | JIANG Ye, YU Zhuoying, LI Min. Research progress on inflammatory mechanism of diabetic neuropathy [J]. Basic & Clinical Medicine, 2023, 43(4): 669-673. |
[15] | LIU Fen, HU Runfang, MAO Song, XU Min, SHI Wenjing, CHEN Ling. Dexamethasone attenuates airway inflammation in mouse models with allergic asthma [J]. Basic & Clinical Medicine, 2023, 43(3): 402-407. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备07012236号
Website Copyright © Basic & Clinical Medicine