Basic & Clinical Medicine ›› 2023, Vol. 43 ›› Issue (12): 1881-1885.doi: 10.16352/j.issn.1001-6325.2023.12.1881
• Mini Reviews • Previous Articles Next Articles
MA Jiajunyan1,2, RUI Tiannan1,2, ZHANG Yongsheng1*
Received:2023-04-26
Revised:2023-09-28
Online:2023-12-05
Published:2023-11-29
Contact:
* shengyongzh@126.com
CLC Number:
MA Jiajunyan, RUI Tiannan, ZHANG Yongsheng. Research progress on the role of thrombospondin 2 in malignant tumors[J]. Basic & Clinical Medicine, 2023, 43(12): 1881-1885.
| [1] | Zou S, Li J, Yan J, et al. Distribution of serum thrombospondin-2, a novel tumor marker, in general population and cancer patients in China[J]. Clin Chim Acta, 2021, 518: 123-127. |
| [2] | Calabro NE, Kristofik NJ, Kyriakides TR. Thrombos-pondin-2 and extracellular matrix assembly[J]. Biochim Biophys Acta, 2014, 1840: 2396-2402. |
| [3] | Hou CH, Tang CH, Chen PC, et al. Thrombospondin 2 promotes IL-6 production in osteoarthritis synovial fibroblasts via the PI3K/AKT/NF-κB pathway[J]. J Inflamm Res, 2021, 14: 5955-5967. |
| [4] | Wang W, He Y, Wu L, et al. N(6) -methyladenosine RNA demethylase FTO regulates extracellular matrix-related genes and promotes pancreatic cancer cell migration and invasion[J]. Cancer Med, 2023, 12: 3731-3743. |
| [5] | Liao X, Wang W, Yu B, et al. Thrombospondin-2 acts as a bridge between tumor extracellular matrix and immune infiltration in pancreatic and stomach adenocarcinomas: an integrative pan-cancer analysis[J]. Cancer Cell Int, 2022, 22: 213. doi: 10.1186/s12935-022-02622-x. |
| [6] | Shi M, Gu Y, Jin K, et al. CD47 expression in gastric cancer clinical correlates and association with macrophage infiltration[J]. Cancer Immunol Immunother, 2021, 70: 1831-1840. |
| [7] | Hsieh RC, Krishnan S, Wu RC, et al. ATR-mediated CD47 and PD-L1 up-regulation restricts radiotherapy-induced immune priming and abscopal responses in colore-ctal cancer[J]. Sci Immunol, 2022, 7: eabl9330. doi: 10.1126/sciimmunol.abl9330. |
| [8] | Qu HL, Hasen GW, Hou YY, et al. THBS2 promotes cell migration and invasion in colorectal cancer via modulating Wnt/β-catenin signaling pathway[J]. Kaohsiung J Med Sci, 2022, 38: 469-478. |
| [9] | Deng B, Liu XP, Wang X. Prognostic and Immunologi-cal Role of THBS2 in Colorectal cancer[J]. Biomed Res Int, 2021, 2021: 1124985. doi: 10.1155/2021/1124985. |
| [10] | Xu C, Gu L, Kuerbanjiang M, et al. Thrombospondin 2/Toll-Like Receptor 4 Axis Contributes to HIF-1 alpha-Derived Glycolysis in Colorectal Cancer[J]. Front Oncol, 2020, 10: 557730. doi: 10.3389/fonc.2020.557730. |
| [11] | Slattery ML, Mullany LE, Sakoda LC, et al. The PI3K/AKT signaling pathway: Associations of miRNAs with dysregulated gene expression in colorectal cancer[J]. Mol Carcinog, 2018, 57: 243-261. |
| [12] | Deng B, Liu XP, Wang X. Prognostic and Immunological Role of THBS2 in Colorectal cancer[J]. Biomed Res Int, 2021, 2021: 1124985. doi: 10.1155/2021/1124985. |
| [13] | Nan P, Dong X, Bai X, et al. Tumor-stroma TGF-beta1-THBS2 feedback circuit drives pancreatic ductal adenocarcinoma progression via integrin alphavbeta3/CD36-mediated activation of the MAPK pathway[J]. Cancer letters, 2022, 528: 59-75. |
| [14] | Le Large TYS, Meijer LL, Paleckyte R, et al. Combined expression of plasma thrombospondin-2 and CA19-9 for diagnosis of pancreatic cancer and distal cholangiocar-cinoma: a proteome approach[J]. Oncologist, 2020, 25: e634-e643. |
| [15] | Byrling J, Hilmersson KS, Ansari D, et al. Thrombospondin-2 as a diagnostic biomarker for distal cholangiocarcinoma and pancreatic ductal adenocarcinoma[J]. Clin Transl Oncol, 2022, 24: 297-304. |
| [16] | Gimotty PA, Till JE, Udgata S, et al. THSB2 as a prognostic biomarker for patients diagnosed with metastatic pancreatic ductal adenocarcinoma[J]. Oncotarget, 2021, 12: 2266-2272. |
| [17] | Bao Y, Yan E, Wang N. Evaluation of GREM1 and THBS2 as prognostic markers in in non-small cell lung cancer[J]. J Cancer Res Clin Oncol, 2023, 149: 7849-7856. |
| [18] | Liu JF, Lee CW, Tsai MH, et al. Thrombospondin 2 promotes tumor metastasis by inducing matrix metalloproteinase-13 production in lung cancer cells [J]. Biochem Pharmacol, 2018, 155: 537-546. |
| [19] | Wang L, Zhao L, Wang Y. Circular RNA circ_0020123 promotes non-small cell lung cancer progression by sponging miR-590-5p to regulate THBS2[J]. Cancer Cell Int, 2020, 20: 387. doi: 10.1186/s12935-020-01444-z. |
| [20] | Yang Z, Wu H, Zhang K, et al. Circ_0007580 knockdown strengthens the radiosensitivity of non-small cell lung cancer via the miR-598-dependent regulation of THBS2[J]. Thorac Cancer, 2022, 13: 678-689. |
| [21] | Li X, Wu F. Mesenchymal stem cell-derived extracellular vesicles transfer miR-598 to inhibit the growth and metastasis of non-small-cell lung cancer by targeting THBS2[J]. Cell Death Discov, 2023, 9: 3. doi: 10.1038/s41420-022-01283-z. |
| [22] | Wang L, Feng L, Liu L, et al. Joint effect of THBS2 and VCAN accelerating the poor prognosis of gastric cancer[J]. Aging (Albany NY), 2023, 15: 1343-1357. |
| [23] | Grunberg N, Pevsner-Fischer M, Goshen-Lago T, et al. Cancer-associated fibroblasts promote aggressive gastric cancer phenotypes via heat shock factor 1-mediated secretion of extracellular vesicles[J]. Cancer Res, 2021, 81: 1639-1653. |
| [24] | Chu XD, Lin ZB, Huang T, et al. Thrombospondin-2 holds prognostic value and is associated with metastasis and the mismatch repair process in gastric cancer[J]. BMC Cancer, 2022, 22: 250. doi: 10.1186/s12885-022-09201-3. |
| [25] | Shi H, Qi C, Meng L, et al. Bone marrow-derived mesenchymal stem cells promote Helicobacter pylori-associated gastric cancer progression by secreting thrombospondin-2[J]. Cell Prolif, 2021, 54: e13114. doi: 10.1111/cpr.13114. |
| [26] | Carpino G, Cardinale V, Di Giamberardino A, et al. Thrombospondin 1 and 2 along with PEDF inhibit angiogenesis and promote lymphangiogenesis in intrahe-patic cholangiocarcinoma[J]. J Hepatol, 2021, 75: 1377-1386. |
| [27] | Carvalho RF, do Canto LM, Abildgaard C, et al. Single-cell and bulk RNA sequencing reveal ligands and receptors associated with worse overall survival in serous ovarian cancer[J]. Cell Commun Signal, 2022, 20: 176. doi: 10.1186/s12964-022-00991-4. |
| [1] | ZHANG Yufeng, ZHANG Xinna, ZHOU Yanjiao. PHLPP2 variation is associated with prognosis as well as ferroptosis in patients of advanced lung adenocarcinoma harboring EGFR+TP53 co-mutations [J]. Basic & Clinical Medicine, 2026, 46(1): 103-108. |
| [2] | LI Huangyi, HUANG Daohang, ZHANG Wenyu, HUANG Dingming, HUANG Qichun. Mannitol promotes the apoptosis ofhuman lung squamous carcinoma cell line NCI-H292 [J]. Basic & Clinical Medicine, 2025, 45(3): 336-340. |
| [3] | ZHANG Hui, GAN Shibao, LI Hui, ZHOU Jiaxun, ZHAO Mengqi. Silencing KRT17 inhibits proliferation of human esophageal squamous cell line KYSE-150 [J]. Basic & Clinical Medicine, 2025, 45(12): 1548-1556. |
| [4] | FU Miao, LIU Peng, TIAN Wen, WANG Sha, YIN Xiaomei, LIU Hao, WANG Donghai. METTL3 regulates ferroptosis and malignant progression of cervical cancer cells through mediating TRPM7 methylation [J]. Basic & Clinical Medicine, 2025, 45(10): 1318-1325. |
| [5] | ZENG Cimei, HUANG Denggao, WANG Lei, LIANG Haimei, MA Ximiao. Silencing LINC00460 inhibits proliferation and migration of human lung adenocarcinoma cell lines via EZH2 [J]. Basic & Clinical Medicine, 2025, 45(10): 1298-1305. |
| [6] | CHEN Qingxia, LIANG Yuling, LUO Yalan, NIU Bin. Inhibition of NRF1/ABCC1 improves chemosensitivity of human lung adenocarcinoma cell lines to cisplatin [J]. Basic & Clinical Medicine, 2025, 45(1): 51-59. |
| [7] | LI Shunle, LI Rong, TIAN Yaya, RAN Xiaoli, ZHAO Yanpei, XU Meng. Association of serum KLF5 and actinin-4 levels with prognosis of TACE treatment for hepatocellular carcinoma [J]. Basic & Clinical Medicine, 2024, 44(9): 1284-1289. |
| [8] | ZHANG Wei, ZHANG Zhen, LIU Dong, JIANG Houzhou, LIANG Wei. Comparison of adverse reactions and effects of IMRT combined with different chemotherapy regimens in patients with early stage esophageal squamous cell carcinoma [J]. Basic & Clinical Medicine, 2024, 44(7): 1018-1022. |
| [9] | LIU Jinghua, LU Lin. Genetic and molecular mechanism changes of adrenocortical carcinoma [J]. Basic & Clinical Medicine, 2024, 44(6): 748-752. |
| [10] | LU Huiying, WANG Jianguo. Downregulation of demethylase FTO inhibits proliferation of human liver cancer cell line HepG2 [J]. Basic & Clinical Medicine, 2024, 44(2): 185-191. |
| [11] | QUAN Yinglan, LI Ning. Diagnosis and thermal ablation of papillary thyroid microcarcinoma [J]. Basic & Clinical Medicine, 2024, 44(12): 1722-1726. |
| [12] | LIAO Zhencheng, YANG Siyi, WU Ping'an. Increased expression of m6A demethylase FTO inhibits the proliferation of nasopharyngeal carcinoma cells [J]. Basic & Clinical Medicine, 2024, 44(1): 57-62. |
| [13] | WANG Chunyan, WANG Ping, SONG Longfei, LIU Yongquan, MAN Jun. Effects of lncRNA FEZF1-AS1 on proliferation, migration and invasion through regulating EZH2 of lung interstitial cells [J]. Basic & Clinical Medicine, 2024, 44(1): 43-50. |
| [14] | Yimamaimaitijiang·ABRA, Pakhardin·BAIKERE, YI Chao, TONG Qing. Clinical value of plasma hsa_circ_005230 in the diagnosis and prognosis evaluation of primary hepatocellular carcinoma [J]. Basic & Clinical Medicine, 2023, 43(9): 1417-1422. |
| [15] | Yierxiati·TUERHONG, ZHANG Haiping, Kawuli·JUMAI, LI Ziyao, ZHANG Liwei, Yidilisi·AWUTI. Expression and significance of CST4 in Kazakh esophageal squamous cell carcinoma [J]. Basic & Clinical Medicine, 2023, 43(9): 1412-1416. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||