[1] 《中国心血管健康与疾病报告2020》概述[J].中国心血管病研究,2021, 19: 582-590. [2] Colpaert RMW, Calore M. MicroRNAs in cardiac diseases[J]. Cells, 2019, 18, 8: 737.doi:10.3390/cells8070737. [3] Tu YF, Wan L, Bu LH, et al. MicroRNA-22 downregulation by atorvastatin in a mouse model of cardiac hypertrophy: a new mechanism for antihypertrophic intervention[J]. Cell Physiol Biochem, 2013, 31: 997-1008. [4] Yang XY, Tao LH, Zhu J, et al. Long noncoding RNA FTX reduces hypertrophy of neonatal mouse cardiac myocytes and regulates the PTEN/PI3K/Akt signaling pathway by sponging microRNA-22[J]. Med Sci Monit, 2019, 25: 9609-9617. [5] Kopechek JA, McTiernan CF, Chen X, et al. Ultrasound and microbubble-targeted delivery of a microRNA inhibitor to the heart suppresses cardiac hypertrophy and preserves cardiac function[J]. Theranostics, 2019, 9: 7088-7098. [6] Yang JJ, Nie Y, Wang F, et al. Reciprocal regulation of miR-23a and lysophosphatidic acid receptor signaling in cardiomyocyte hypertrophy[J]. Biochim Biophys Acta, 2013, 1831: 1386-1394. [7] Yang J, Xu J, Han X, et al. Lysophosphatidic acid is associated with cardiac dysfunction and hypertrophy by suppressing autophagy via the LPA3/AKT/mTOR pathway[J].Front Physiol, 2018, 9:1315.doi:10.3389/fphys.2018.01315. [8] Li Z, Song Y, Liu L, et al. miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation[J]. Cell Death Differ, 2017, 24: 1205-1213. [9] Yan HL, Wang H, Zhu XX, et al. PGC-1alphaAdeno-associated virus-mediated delivery of anti-miR-199a tough decoys attenuates cardiac hypertrophy by targeting[J]. Mol Ther Nucleic Acids, 2021, 23: 406-417. [10] Duygu B, Poels EM, Juni R, et al. miR-199b-5p is a regulator of left ventricular remodeling following myocardial infarction[J]. Noncoding RNA Res, 2017, 2: 18-26. [11] Zhou Y, Li KS, Liu L, et al. MicroRNA132 promotes oxidative stressinduced pyroptosis by targeting sirtuin 1 in myocardial ischaemiareperfusion injury[J].Int J Mol Med, 2020, 45:1942-1950. [12] Man AWC, Li H, Xia N.The role of sirtuin1 in regulat-ing endothelial function, arterial remodeling and vascular aging[J].Front Physiol, 2019, 10:1173.doi:10.3389/fphys.2018.01315. [13] Li F, Li SS, Chen H, et al. miR-320 accelerates chronic heart failure with cardiac fibrosis through activation of the IL6/STAT3 axis[J]. Aging (Albany NY), 2021, 13: 22516-22527. [14] Jia GZ, Liang CG, Li WH, et al. miR-410-3p facilitates Angiotensin Ⅱ-induced cardiac hypertrophy by targeting Smad7[J]. Bioengineered, 2022, 13: 119-127. [15] Shi JY, Chen C, Xu X, et al. miR-29a promotes pathological cardiac hypertrophy by targeting the PTEN/AKT/mTOR signalling pathway and suppressing autophagy[J]. Acta Physiol (Oxf), 2019, 227: 13323.doi:10.1111/apha.13323. [16] Kura B, Kalocayova B, LeBaron TW, et al. Regulation of microRNAs by molecular hydrogen contributes to the prevention of radiation-induced damage in the rat myocardium[J]. Mol Cell Biochem, 2019, 457: 61-72. [17] He R, Ding C, Yin P et al. miR-1a-3p mitigates isoproterenol-induced heart failure by enhancing the expression of mitochondrial ND1 and COX1.[J].Exp Cell Res, 2019, 378: 87-97. [18] Zhao L, Li W, Zhao H.Inhibition of long non-coding RNA TUG1 protects against diabetic cardiomyopathy induced diastolic dysfunction by regulating miR-499-5p.[J]. Am J Transl Res, 2020, 12: 718-730. [19] Yuan Y, Wang J, Chen QX, et al. Long non-coding RNA cytoskeleton regulator RNA (CYTOR) modulates pathological cardiac hypertrophy through miR-155-mediated IKKi signaling[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865: 1421-1427. [20] Long YD, Wang L, Li ZQ.SP1-induced SNHG14 aggravates hypertrophic response in in vitro model of cardiac hypertrophy via up-regulation of PCDH17.[J].J Cell Mol Med, 2020, 24: 7115-7126. [21] Salamon I, Biagini E, Kunderfranco P, et al. Circulating miR-184 is a potential predictive biomarker of cardiac damage in Anderson-Fabry disease[J]. Cell Death Dis, 2021, 12: 1150.doi:10.1038/s41419-021-04438-5. [22] Blanco-Domínguez R, Sánchez-Díaz R, de la Fuente H, et al. A novel circulating microRNA for the detection of acute myocarditis[J]. N Engl J Med, 2021, 384: 2014-2027. [23] Täubel J, Hauke W, Rump S, et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study[J]. Eur Heart J, 2021, 42: 178-188. |