[1] |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. Cell Physiology, 2018, 233: 6425-6440.
|
[2] |
Galván-Peña S, O'Neill LA. Metabolic reprograming in macrophage polarization[J]. Front Immunol, 2014, 5: 420. doi:10.3389/fimmu.2014.00420.
|
[3] |
Williams NC, O'Neill LAJ. A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation[J]. Front Immunol, 2018, 9: 141. doi:10.3389/fimmu.2018.00141.
|
[4] |
Viola A, Munari F, Sánchez-Rodríguez R, et al. The metabolic signature of macrophage responses[J]. Front Immunol, 2019, 10: 1462. doi:10.3389/fimmu.2019.01462.
|
[5] |
P. Kent L, Munehiko S and Tiffany H. Metabolism supports macrophage activation[J]. Front Immunol, 2017, 8: 61-67
|
[6] |
Mills E, O'Neill LA. Succinate: a metabolic signal in inflammation[J]. Trends Cell Biol, 2014, 24: 313-320.
|
[7] |
Liu PS, Wang H, Li X, et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming[J].Nat Immunol, 2017, 18: 985-994.
|
[8] |
Jenkins SJ, Ruckerl D, Cook PC, et al. Local macro-phage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation[J]. Science, 2011, 332: 1284-1288.
|
[9] |
Luongo TS, Eller JM, Lu MJ, et al. SLC25A51 is a mammalian mitochondrial NAD+ transporter[J]. Nature, 2020, 588: 174-179.
|
[10] |
Kory N, Uit de Bos J, van der Rijt S, et al. MCART1/SLC25A51 is required for mitochondrial NAD transport[J]. Sci Adv, 2020, 6: eabe5310. doi:10.1126/sciadv.abe5310
|
[11] |
Alano CC, Tran A, Tao R, et al. Differences among cell types in NAD(+) compartmentalization:a comparison of neurons, astrocytes, and cardiac myocytes[J]. Neurosci Res, 2007, 85: 3378-3385.
|