Basic & Clinical Medicine ›› 2023, Vol. 43 ›› Issue (8): 1313-1316.doi: 10.16352/j.issn.1001-6325.2023.08.1313
• Mini Reviews • Previous Articles Next Articles
WU Qi, WANG Shaobo*
Received:
2022-03-10
Revised:
2023-01-06
Online:
2023-08-05
Published:
2023-07-26
Contact:
*15812082912@126.com
CLC Number:
WU Qi, WANG Shaobo. Progress in CRISPR/Cas9 for CAR-T cell therapy of tumors[J]. Basic & Clinical Medicine, 2023, 43(8): 1313-1316.
[1] | Zhou X, Tu S, Wang C, et al. Phase Ⅰ trial of fourth-generation anti-CD19 chimeric antigen receptor T cells against relapsed or refractory B cell non-Hodgkin lymphomas[J]. Front Immunol, 2020, 11: 564099. doi: 10.3389/fimmu.2020.564099. |
[2] | Roddie C, Dias J, O'Reilly MA, et al. Durable responses and low toxicity after fast off-rate CD19 chimeric antigen receptor-T therapy in adults with relapsed or refractory B-cell acute lymphoblastic leukemia[J]. J Clin Oncol, 2021, 39: 3352-3363. |
[3] | Haas AR, Tanyi JL, O'Hara MH, et al. Phase Ⅰ study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers[J]. Mol Ther, 2019, 27: 1919-1929. |
[4] | Adusumilli PS, Zauderer MG, Rivière I, et al. A phase Ⅰ trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab[J]. Cancer Discov, 2021, 11: 2748-2763. |
[5] | Heczey A, Courtney AN, Montalbano A, et al. Anti-GD2 CAR-NKT cells in patients with relapsed or refractory neuroblastoma: an interim analysis[J]. Nat Med, 2020, 26: 1686-1690. |
[6] | Katz SC, Hardaway J, Prince E, et al. HITM-SIR: phase Ib trial of intraarterial chimeric antigen receptor T-cell therapy and selective internal radiation therapy for CEA(+) liver metastases[J]. Cancer Gene Ther, 2020, 27: 341-355. |
[7] | Zhang Y, Zhang Z, Ding Y, et al. Phase I clinical trial of EGFR-specific CAR-T cells generated by the piggyBac transposon system in advanced relapsed/refractory non-small cell lung cancer patients[J]. J Cancer Res Clin Oncol, 2021, 147: 3725-3734. |
[8] | Liu Y, Guo Y, Wu Z, et al. Anti-EGFR chimeric antigen receptor-modified T cells in metastatic pancreatic carcinoma: a phase Ⅰ clinical trial[J]. Cytotherapy, 2020, 22: 573-580. |
[9] | Wang Q, Zhong X, Li Q, et al. CRISPR-Cas9-mediated in vivo gene integration at the albumin locus recovers hemostasis in neonatal and adult hemophilia B mice[J]. Mol Ther Methods Clin Dev, 2020, 18: 520-531. |
[10] | Guo P, Yang J, Huang J, et al. Therapeutic genome editing of triple-negative breast tumors using a noncationic and deformable nanolipogel[J]. Proc Natl Acad Sci U S A, 2019, 116: 18295-18303. |
[11] | Ren J, Liu X, Fang C, et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition[J]. Clin Cancer Res, 2017, 23: 2255-2266. |
[12] | Eyquem J, Mansilla-Soto J, Giavridis T, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection[J]. Nature, 2017, 543: 113-117. |
[13] | Hu W, Zi Z, Jin Y, et al. CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions[J]. Cancer Immunol Immunother, 2019, 68: 365-377. |
[14] | Ruste V, Goldschmidt V, Laparra A, et al. The determinants of very severe immune-related adverse events associated with immune checkpoint inhibitors: a prospective study of the French REISAMIC registry[J]. Eur J Cancer, 2021, 158: 217-224. |
[15] | Gargett T, Yu W, Dotti G, et al. GD2-specific CAR T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade[J]. Mol Ther, 2016, 24: 1135-1149. |
[16] | Zhang Y, Zhang X, Cheng C, et al. CRISPR-Cas9 mediated LAG-3 disruption in CAR-T cells[J]. Front Med, 2017, 11: 554-562. |
[17] | Giuffrida L, Sek K, Henderson MA, et al. CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR T cell efficacy [J]. Nat Commun, 2021, 12: 3236. doi: 10.1038/s41467-021-23331-5. |
[18] | Jung IY, Kim YY, Yu HS, et al. CRISPR/Cas9-mediated knockout of DGK improves antitumor activities of human T cells[J]. Cancer Res, 2018, 78: 4692-4703. |
[19] | Sterner RM, Sakemura R, Cox MJ, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts[J]. Blood, 2019, 133: 697-709. |
[20] | Liu S, Deng B, Yin Z, et al. Combination of CD19 and CD22 CAR-T cell therapy in relapsed B-cell acute lymphoblastic leukemia after allogeneic transplantation[J]. Am J Hematol, 2021, 96: 671-679. |
[21] | Liu Y, Deng B, Hu B, et al. Sequential different B-cell antigen-targeted CAR T-cell therapy for pediatric refractory/relapsed Burkitt lymphoma[J]. Blood Adv, 2022, 6: 717-730. |
[22] | Dai H, Wu Z, Jia H, et al. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia[J]. J Hematol Oncol, 2020, 13: 30. doi: 10.1186/s13045-020-00856-8. |
[23] | Cordoba S, Onuoha S, Thomas S, et al. CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial[J]. Nat Med, 2021, 27: 1797-1805. |
[24] | Hu Y, Zhou Y, Zhang M, et al. CRISPR/Cas9-engineered universal CD19/CD22 dual-targeted CAR-T cell therapy for relapsed/refractory B-cell acute lymphoblastic leukemia[J]. Clin Cancer Res, 2021, 27: 2764-2772. |
[25] | Zanetti SR, Velasco-Hernandez T, Gutierrez-Agüera F, et al. A novel and efficient tandem CD19- and CD22-directed CAR for B cell ALL[J]. Mol Ther, 2022, 30: 550-563. |
[1] | . Drug therapy for intracranial germ cell tumor [J]. Basic & Clinical Medicine, 2024, 44(10): 1350-1356. |
[2] | . Advances in pharmacotherapy for angiosarcoma [J]. Basic & Clinical Medicine, 2024, 44(10): 1363-1367. |
[3] | . Targeted therapy and immunotherapy for malignant mesothelioma [J]. Basic & Clinical Medicine, 2024, 44(10): 1342-1349. |
[4] | YAN Chenhong, JIN Er. Progress of exosomal PD-L1 in diagnosis and treatment of non-small cell lung cancer [J]. Basic & Clinical Medicine, 2023, 43(9): 1457-1461. |
[5] | DAI Di, LIU Yuqin. Diagnostic difficulties and treatment progress of primary gastric lymphoma [J]. Basic & Clinical Medicine, 2023, 43(9): 1462-1466. |
[6] | CHEN Zhongjie, HUANG Jiaru, HU Qing, ZHAO Zhenqin, CHEN Qiaoqiao, SUN Junyuan, JIA Jing. Progress on the pathological roles of immune checkpoint CD276 protein in tumorigenesis and development [J]. Basic & Clinical Medicine, 2023, 43(7): 1143-1147. |
[7] | LI Zhen, DUAN Zhaojun, LUO Yunping. Ganglioside GD2 is a potential candidate marker for lung cancer stem cells [J]. Basic & Clinical Medicine, 2023, 43(5): 777-784. |
[8] | ZHAO Yongjing, QIU Jiaxing, ZHANG Diya, GUO Hongjiang, WANG Yucheng, JU Rui, GUO Lei. Stable knockout of Mcart-1 down-regulates the proliferation and oxidative phosphorylation of RAW264.7 macrophages [J]. Basic & Clinical Medicine, 2023, 43(4): 568-575. |
[9] | ZHOU Lan, ZHANG Sheng-gui, HU Zu-liang, WANG Tian-xian, YUE Peng-peng, YU Hong-hao. Efficient editing of mouse miR let-7a based on CRISPR/Cas9 system [J]. Basic & Clinical Medicine, 2022, 42(6): 857-863. |
[10] | GUO Xiao-peng, XING Bing, MA Wen-bin. Immune microenvironment and immunotherapy of pituitary adenomas [J]. Basic & Clinical Medicine, 2022, 42(1): 173-178. |
[11] | LI Qian, LIU Chun-hua, WANG Chen-yi, TAN Jiao-jiao, MA Yu-ping, LYU Hai-hong. Progress of study on inflammatory factors regulating function of vascular endothelial cells from type 1 diabetes mellitus [J]. Basic & Clinical Medicine, 2021, 41(10): 1497-1501. |
[12] | SUN Jing-yu, YAO He, HU Gang, WEI Jie, GUO Jun, ZHANG Xin, LIN Ya-jun. HUVECs with KNDC1 knockout mediated by CRISPR/Cas9 have anti-aging ability [J]. Basic & Clinical Medicine, 2020, 40(9): 1175-1181. |
[13] | HAN Ling, YANG Ke, XUE Zheng, LYU Xiang. Efficient identification of point-mutant monoclonal cells through array tagged high-throughput sequencing [J]. Basic & Clinical Medicine, 2020, 40(7): 903-911. |
[14] | FENG Dong-ping, SHANG Han-qiao, YANG Hang, ZHANG Hu-jun, ZHANG Ting, YANG Meng-xi, TU Qiang, REN Jing-yi. Establishment of cetp-/- model and liver transcriptomics study in zebrafish [J]. Basic & Clinical Medicine, 2020, 40(7): 940-947. |
[15] | . Exploration of possible different molecules between EBV associated and non-associated gastric cancer by omics [J]. Basic & Clinical Medicine, 2018, 38(7): 933-937. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 401
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 527
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||