[1] Ryan S, Arnaud C, Fitzpatrick SF, et al. Adipose tissue as a key player in obstructive sleep apnoea [J]. Eur Respir Rev,2019, 28: 190006. doi: 10.1183/16000617.0006-2019. [2] Osman AM, Carter SG, Carberry JC, et al. Obstructive sleep apnea: current perspectives [J]. Nat Sci Sleep, 2018, 10:21-34. [3] Sanz-Rubio D, Sanz A, Varona L, et al. Forkhead Box P3 methylation and expression in men with obstructive sleep apnea [J]. Int J Mol Sci, 2020, 21. doi: 10.3390/ijms21062233. [4] Khurana S, Sharda S, Saha B, et al. Canvassing the aetiology, prognosis and molecular signatures of obstructive sleep apnoea [J]. Biomarkers, 2019, 24: 1-16. [5] Polotsky VY, Rubin AE, Balbir A, et al. Intermittent hypoxia causes REM sleep deficits and decreases EEG delta power in NREM sleep in the C57BL/6J mouse [J]. Sleep Med, 2006, 7: 7-16. [6] Yang T, Sun J, Wei B, et al. SENP1-mediated NEMO de-SUMOylation inhibits intermittent hypoxia induced inflammatory response of microglia in vitro [J]. J Cell Physiol,2020, 235: 3529-3538. [7] Aldholmi M, Wilkinson B, Ganesan A. Epigenetic modulation of secondary metabolite profiles in Aspergillus calidoustus and Aspergillus westerdijkiae through histone deacetylase (HDAC) inhibition by vorinostat [J]. J Antibiot, 2020. doi: 10.1038/s41429-020-0286-5. [8] Virzì GM, Clementi A, Brocca A, et al. Epigenetics: a potential key mechanism involved in the pathogenesis of cardiorenal syndromes [J]. J Nephrol, 2018, 31: 333-341. [9] Julian CG. Epigenomics and human adaptation to high altitude [J]. J Appl Physiol (1985), 2017, 123: 1362-1370. [10] Kiernan EA, Smith SMC, Mitchell GS, et al. Mechanisms of microglial activation in models of inflammation and hypoxia: implications for chronic intermittent hypoxia [J]. J Physiol, 2016, 594: 1563-1577. [11] Garcia AJ, Viemri JC, Khuu MA. Respiratory rhythm generation, hypoxia, and oxidative stress-implications for development [J]. Respir Physiol Neurobiol, 2019, 270. doi: 10.1016/j.resp.2019.103259. [12] Nanduri J, Peng YJ, Wang N, et al. Epigenetic regula-tion of redox state mediates persistent cardiorespiratory abnormalities after long-term intermittent hypoxia [J]. J Physiol, 2017, 595: 63-77. [13] Nanduri J, Makarenko V, Reddy VD, et al. Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis [J]. Proc Natl Acad Sci U S A, 2012, 109: 2515-2520. [14] Chu A, Gozal D, Cortese R, et al. Cardiovascular dysfunction in adult mice following postnatal intermittent hypoxia [J]. Pediatr Res, 2015, 77: 425-433. [15] Lombardi C, Pengo MF, Parati G. Obstructive sleep apnea syndrome and autonomic dysfunction [J]. Auton Neurosci, 2019, 221. doi: 10.1016/j.autneu.2019.102563. [16] Kim J, Bhattacharjee R, Khalyfaa A, et al. DNA methylation in inflammatory genes among children with obstruc-tive sleep apnea [J]. Am J Respir Crit Care Med, 2012, 185: 330-338. [17] Perikleous E, Steiropoulos P, Tzouvelekis A, et al. DNA methylation in pediatric obstructive sleep apnea: an overview of preliminary findings [J]. Front Pediatr, 2018, 6. doi: 10.3389/fped.2018.00154. [18] Blechner M, Williamson AA. Consequences of obstructive sleep apnea in children [J]. Curr Probl Pediatr Adolesc Health Care, 2016, 46: 19-26. [19] Chen YC, Chen TW, Su MC, et al. Whole genome DNA methylation analysis of obstructive sleep apnea: IL1R2, NPR2, AR, SP140 methylation and clinical phenotype [J]. Sleep, 2016, 39: 743-755. [20] Cortese R, Gileles-Hillel A, Khalyfa A, et al. Aorta macrophage inflammatory and epigenetic changes in a murine model of obstructive sleep apnea: potential role of CD36 [J]. Sci Rep, 2017, 7. doi: 10.1038/srep43648. [21] Liu KX, Chen GP, Lin PL, et al. Detection and analysis of apoptosis- and autophagy-related miRNAs of mouse vascular endothelial cells in chronic intermittent hypoxia model [J]. Life Sci, 2018, 193:194-199. [22] Gao H, Han Z, Huang S, et al. Intermittent hypoxia caused cognitive dysfunction relate to miRNAs dysregula-tion in hippocampus [J]. Behav Brain Res, 2017, 335:80-87. [23] Hao S, Jiang L, Fu C, et al. 2-Methoxyestradiol attenuates chronic-intermittent-hypoxia-induced pulmonary hypertension through regulating microRNA-223 [J]. J Cell Physiol, 2019, 234: 6324-6335. [24] Zhang K, Ma Z, Wang W, et al. Beneficial effects of tolvaptan on atrial remodeling induced by chronic intermittent hypoxia in rats [J]. Cardiovasc Ther, 2018, 36. doi: 10.1111/1755-5922.12466. [25] Wang W, Zhang K, Li X, et al. Doxycycline attenuates chronic intermittent hypoxia-induced atrial fibrosis in rats [J]. Cardiovasc Ther, 2018, 36.doi: 10.1111/1755-5922.12321. [26] Wu X, Chang SC, Jin J, et al. NLRP3 infiammasome mediates chronic intermittent hypoxia-induced renal injury implication of the microRNA-155/FOXO3a signaling pathway [J]. Cell Physiol, 2018, 233: 9404-9415. [27] Uchiyama T, taya-Hironakaa A, Yamauchi A, et al. Intermittent hypoxia up-regulates CCL2, RETN, and TNFα mRNAs in adipocytes via down-regulation of miR-452 [J]. Int J Mol Sci, 2019, 20: 1960. doi: 10.3390/ijms20081960. [28] Chen Q, Lin G, Huang J, et al. Expression profile of long non-coding RNAs in rat models of OSA-induced cardiovascular disease: new insight into pathogenesis [J]. Sleep Breath, 2019, 23: 795-804. [29] Li K, Chen Z, Qin Y, et al. miR-664a-3p expression in patients with obstructive sleep apnea: a potential marker of atherosclerosis [J]. Medicine (Baltimore), 2018, 97. doi: 10.1097/MD.0000000000009813. |