[1] Baik SH, Kang S, Lee W, et al. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer's disease[J]. Cell Metab, 2019, 30:493-507. [2] Chakravorty A, Jetto CT, Manjithaya R. Dysfunctional mitochondria and mitophagy as drivers of Alzheimer's disease pathogenesis[J]. Front Aging Neurosci, 2019, 11:311. [3] Villegas-Llerena C, Phillips A, Garcia-Reitboeck P, et al. Microglial genes regulating neuroinflammation in the progression of Alzheimer's disease[J]. Curr Opin Neurobiol, 2016, 36:74-81. [4] Mhatre SD, Tsai CA, Rubin AJ, et al. Microglial malfunction: the third rail in the development of Alzheimer's disease[J]. Trends Neurosci, 2015, 38:621-636. [5] Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer's disease[J]. Lancet Neurol, 2015, 14:388-405. [6] Graham WV, Bonito-Oliva A, Sakmar TP. Update on Alzheimer's disease therapy and prevention strategies[J]. Annu Rev Med, 2017, 68:413-430. [7] Kunkle BW, Grenier-Boley B, Sims R, et al. Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing[J]. Nat Genet, 2019, 51:414-430. [8] Griciuc A, Patel S, Federico AN, et al. TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer's disease[J]. Neuron, 2019, 103:820-835. [9] Estus S, Shaw BC, Devanney N, et al. Evaluation of CD33 as a genetic risk factor for Alzheimer's disease[J]. Acta Neuropathol, 2019, 138:187-199. [10] Ulrich JD, Ulland TK, Colonna M, et al. Elucidating the role of TREM2 in Alzheimer's disease[J]. Neuron, 2017, 94:237-248. [11] Sims R, van der Lee SJ, Naj AC, et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease[J]. Nat Genet, 2017, 49:1373-1384. [12] Chen YJ, Nguyen HM, Maezawa I, et al. Inhibition of the potassium channel Kv1.3 reduces infarction and inflammation in ischemic stroke[J]. Ann Clin Transl Neurol, 2018, 5:147-161. [13] Che RX, Xing XX, Liu X, et al. Analysis of multidrug resistance in streptococcus suis ATCC 700794 under tylosin stress[J]. Virulence, 2019, 10:58-67. [14] Zhong L, Chen XF, Wang T, et al. Soluble TREM2 induces inflammatory responses and enhances microglial survival[J]. J Exp Med, 2017, 214:597-607. [15] Ulland TK, Song WM, Huang SC, et al. TREM2 maintains microglial metabolic fitness in Alzheimer's disease[J]. Cell, 2017, 170:649-663. [16] Maezawa I, Nguyen HM, Di Lucente J, et al. Kv1.3 inhibition as a potential microglia-targeted therapy for Alzheimer's disease: preclinical proof of concept[J]. Brain, 2018, 141:596-612. [17] Mullard A. Microglia-targeted candidates push the Alzheimer drug envelope[J]. Nat Rev Drug Discov, 2018, 17:303-305. [18] Almolda B, de Labra C, Barrera I, et al. Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10[J]. Brain Behav Immun, 2015, 45:80-97. [19] Ransohoff RM. How neuroinflammation contributes to neurodegeneration[J]. Science, 2016, 353:777-783. [20] Heckmann BL, Teubner BJW, Tummers B, et al. LC3-associated endocytosis facilitates beta-amyloid clearance and mitigates neurodegeneration in murine Alzheimer's disease[J]. Cell, 2019, 178:536-551. [21] 李杰, 周军媚, 田绍文. 小胶质细胞生物学特性及对神经元调控作用[J]. 基础医学与临床, 2018, 38:563-567. [22] Voet S, Srinivasan S, Lamkanfi M, et al. Inflammasomes in neuroinflammatory and neurodegenerative diseases[J]. EMBO Mol Med, 2019, 11:e10248. doi:10.15252/emmm.201810248. [23] Freeman L, Guo H, David CN, et al. NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes[J]. J Exp Med, 2017, 214:1351-1370. [24] Hong S, Beja-Glasser VF, Nfonoyim BM, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models[J]. Science, 2016, 352:712-716. |