[1] Cao Y, Cao J.Covering and re-covering the heart: development and regeneration of the epicardium[J]. J Cardiovasc Dev Dis, 2018,6,3. doi: 10.3390/jcdd6010003. [2] Huang GN, Thatcher JE, Mcanally J, et al. C/EBP transcription factors mediate epicardial activation during heart development and injury[J]. Science, 2012, 338:1599-1603. [3] Blom JN, Feng Q. Cardiac repair by epicardial EMT: current targets and a potential role for the primary cilium[J]. Pharmacol Ther, 2018,186:114-129. [4] Smits AM, Dronkers E, Goumans MJ. The epicardium as a source of multipotent adult cardiac progenitor cells: their origin, role and fate[J]. Pharmacol Res, 2018,127:129-140. [5] Quijada P, Misra A, Velasquez LS, et al. Pre-existing fibroblasts of epicardial origin are the primary source of pathological fibrosis in cardiac ischemia and aging[J]. J Mol Cell Cardiol, 2019,129:92-104. [6] Cai CL, Martin JC, Sun Y, et al. A myocardial lineage derives from Tbx18 epicardial cells[J]. Nature, 2008, 454:104-108. [7] Dubé KN, Thomas TM, Munshaw S, et al. Recapitulation of developmental mechanisms to revascularize the ischemic heart[J]. JCI Insight, 2017, 2: e96800-96821. [8] Jingli C, Poss KD. The epicardium as a hub for heart regeneration[J]. Nat Rev Cardiol, 2018, 15:631-647. [9] Karra R, Poss KD. Redirecting cardiac growth mech-anisms for therapeutic regeneration[J]. J Clin Invest, 2017, 127:427-436. [10] Ramjee V, Li D, Manderfield LJ, et al. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction.[J]. J Clin Invest, 2017, 127:899-911. [11] Vieira JM, Howard S, Villa Del Campo C, et al. BRG1-SWI/SNF-dependent regulation of the Wt1 transcriptional landscape mediates epicardial activity during heart development and disease[J]. Nat Commun, 2017,24:16034-16046. [12] Ramjee V, Li D, Manderfield LJ, et al. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction[J]. J Clin Invest, 2017,127:899-911. [13] Bax NAM, Duim SN, Kruithof BPT, et al. In vivo and in vitro approaches reveal novel insight into the ability of epicardium-derived cells to create their own extracellular environment[J]. Front Cardiovasc Med, 2019. doi: 10.3389/fcvm.2019.00081. [14] Mercer SE, Odelberg SJ, Simon HG. A dynamic spatiotemporal extracellular matrix facilitates epicardial-mediated vertebrate heart regeneration[J]. Dev Biol, 2013, 382:457-469. [15] Smart N, Bollini S, Dubé KN, et al. De novo cardiomyocytes from within the activated adult heart after injury[J]. Nature, 2011, 474:640-644. [16] Goldman JA, Kuzu G, Lee N, et al. Resolving heart regeneration by replacement histone profiling[J]. Dev Cell, 2017, 40:392-404. [17] Iyer D, Gambardella L, Bernard WG, et al. Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells[J]. Development, 2015, 142:1528-1541. [18] Guadix JA, Orlova VV, Giacomelli E, et al. Human pluripotent stem cell differentiation into functional epicardial progenitor cells[J]. Stem Cell Rep, 2017, 9:1754-1764. [19] Tang J, Wang J, Huang K, et al. Cardiac cell-integrated microneedle patch for treating myocardial infarction[J]. Sci Adv, 2018,4. doi: 10.1126/sciadv.aat9365. [20] Wang QL, Wang HJ, Li ZH, et al. Mesenchymal stem cell-loaded cardiac patch promotes epicardial activation and repair of the infarcted myocardium[J]. J Cell Mol Med, 2017,21:1751-1766. [21] Lin X, Liu Y, Bai A, et al. A viscoelastic adhesive epicardial patch for treating myocardial infarction[J]. Nat Biomed Eng, 2019,15. doi: 10.1038/s41551-019-0380-9. [22] Wei K, Serpooshan V, Hurtado C, et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart[J]. Nature,2015,525, 479-485. |