[1]Vaisey G, Banerjee P, North AJ, et al. Piezo1 as a force-through-membrane sensor in red blood cells[J]. elife, 2022, 11: e82621. doi: 10.7554/eLife.82621. [2]Coste B, Mathur J, Schmidt M, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels[J]. Science, 2010, 330: 55-60. [3]Gassner C. PIEZO1: now also featuring blood group antigens[J]. Blood, 2023, 141: 123-124. [4]Karkempetzaki AI, Ravid K. Piezo1 and its function in different blood cell lineages[J]. Cells, 2024, 13: 482. doi: 10.3390/cells13060482. [5]Faucherre A, Kissa K, Nargeot J, et al. Piezo1 plays a role in erythrocyte volume homeostasis[J]. Haemato-logica, 2014, 99: 70-75. [6]Petkova-Kirova P, Murciano N, Iacono G, et al. The Gárdos channel and Piezo1 revisited: comparison between reticulocytes and mature red blood cells[J]. Int J Mol Sci, 2024, 25: 1416. doi: 10.3390/ijms25031416. [7]Kuchel PW, Shishmarev D. Accelerating metabolism and transmembrane cation flux by distorting red blood cells[J]. Sci Adv, 2017, 3: eaao1016. doi: 10.1126/sciadv.aao1016. [8]Caulier A, Garçon L. PIEZO1, sensing the touch during erythropoiesis[J]. Curr Opin Hematol, 2022, 29: 112-118. [9]Caulier A, Jankovsky N, Demont Y, et al. PIEZO1 activation delays erythroid differentiation of normal and hereditary xerocytosis-derived human progenitor cells[J]. Haematologica, 2020, 105: 610-622. [10]Ren R, Guo J, Chen Y, et al. The role of Ca2+/Calcineurin/NFAT signalling pathway in osteoblastogenesis[J]. Cell Prolif, 2021, 54: e13122. doi: 10.1111/cpr.13122. [11]Aglialoro F, Abay A, Yagci N, et al. Mechanical stress induces Ca2+-dependent signal transduction in erythro-blasts and modulates erythropoiesis[J]. Int J Mol Sci, 2021, 22: 955. doi: 10.3390/ijms22020955. [12]Sesti-Costa R, Costa F F, Conran N. Role of macrophages in sickle cell disease erythrophagocytosis and erythro-poiesis[J]. Int J Mol Sci, 2023, 24: 6333. doi: 10.3390/ijms24076333. [13]Aglialoro F, Hofsink N, Hofman M, et al. Inside out integrin activation mediated by PIEZO1 signaling in erythroblasts[J]. Front Physiol, 2020, 11: 958. doi: 10.3389/fphys.2020.00958. [14]Hu Y, Stilp AM, McHugh CP, et al. Whole-genome sequencing association analysis of quantitative red blood cell phenotypes: the NHLBI TOPMed program[J]. Am J Hum Genet, 2021, 108: 874-893. [15]Andolfo I, Russo R, Rosato BE, et al. Genotype-phenotype correlation and risk stratification in a cohort of 123 hereditary stomatocytosis patients[J]. Am J Hematol, 2018, 93: 1509-1517. [16]Andolfo I, Alper SL, Iolascon A. Nobel prize in physiology or medicine 2021, receptors for temperature and touch: implications for hematology[J]. Am J Hematol, 2022, 97: 168-170. [17]Jankovsky N, Caulier A, Demagny J, et al. Recent advances in the pathophysiology of PIEZO1-related hereditary xerocytosis[J]. Am J Hematol, 2021, 96: 1017-1026. [18]Moura PL, Hawley BR, Dobbe J GG, et al. PIEZO1 gain-of-function mutations delay reticulocyte maturation in hereditary xerocytosis[J]. Haematologica, 2020, 105: e268-e271. [19]Kirkham JK, Estepp JH, Weiss MJ, et al. Genetic variation and sickle cell disease severity: a systematic review and Meta-analysis[J]. JAMA Netw Open, 2023, 6: e2337484-e2337484. [20]Nader E, Conran N, Leonardo FC, et al. Piezo1 activation augments sickling propensity and the adhesive properties of sickle red blood cells in a calcium-dependent manner[J]. Br J Haematol, 2023, 202: 657-668. [21]Wadud R, Hannemann A, Rees DC, et al. Yoda1 and phosphatidylserine exposure in red cells from patients with sickle cell anaemia[J]. Sci Rep, 2020, 10: 20110. doi: 10.1038/s41598-020-76979-2. [22]Rooks H, Brewin J, Gardner K, et al. A gain of function variant in PIEZO1 (E756del) and sickle cell disease[J]. Haematologica, 2019, 104: e91-e93. |