Basic & Clinical Medicine ›› 2024, Vol. 44 ›› Issue (1): 114-118.doi: 10.16352/j.issn.1001-6325.2024.01.0114
• Mini Reviews • Previous Articles Next Articles
ZHANG Yahui, BAI Qiong*
Received:
2023-03-16
Revised:
2023-07-31
Online:
2024-01-05
Published:
2023-12-25
Contact:
*:baiqiong@bjmu.edu.cn
CLC Number:
ZHANG Yahui, BAI Qiong. Research progress of hypoxia inducible factor 1α in the mechanism of diabetic kidney disease[J]. Basic & Clinical Medicine, 2024, 44(1): 114-118.
[1] | Duan JY, Duan GC, Wang CJ, et al. Prevalence and risk factors of chronic kidney disease and diabetic kidney disease in a central Chinese urban population: a cross-sectional survey[J]. BMC Nephrol,2020,21:115. doi: 10.1186/s12882-020-01761-5. |
[2] | Tang G, Li S, Zhang C, et al. Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management[J]. Acta Pharm Sin B,2021,11:2749-2767. doi: 10.1016/j.apsb.2020.12.020. |
[3] | Catrina SB, Zheng X. Hypoxia and hypoxia-inducible factors in diabetes and its complications[J]. Diabetologia,2021,64:709-716. doi: 10.1007/s00125-021-05380-z. |
[4] | Yamazaki T, Mimura I, Tanaka T, et al. Treatment of diabetic kidney disease: current and future[J]. Diabetes Metab J,2021,45:11-26. doi: 10.4093/dmj.2020.0217. |
[5] | Feng X, Wang S, Sun Z, et al. Ferroptosis enhanced diabetic renal tubular injury via HIF-1α/HO-1 pathway in db/db mice[J]. Front Endocrinol,2021,12. doi: 10.3389/fendo.2021.626390. |
[6] | Mei S, Li L, Zhou X, et al. Susceptibility of renal fibrosis in diabetes: role of hypoxia inducible factor-1[J]. FASEB J,2022,36:e22477. doi: 10.1096/fj.202200845R. |
[7] | Cai A, Chatziantoniou C, Calmont A. Vascular permeability: regulation pathways and role in kidney dseases[J]. Nephron,2021,145:297-310. doi: 10.1159/000514314. |
[8] | Lin CJ, Lan YM, Ou MQ, et al. Expression of miR-217 and HIF-1α/VEGF pathway in patients with diabetic foot ulcer and its effect on angiogenesis of diabetic foot ulcer rats[J]. J Endocrinol Invest,2019,42:1307-1317. doi: 10.1007/s40618-019-01053-2. |
[9] | Ando A, Hashimoto N, Sakamoto K, et al. Repressive role of stabilized hypoxia inducible factor 1α expression on transforming growth factor β-induced extracellular matrix production in lung cancer cells[J]. Cancer Sci,2019,110:1959-1973. doi: 10.1111/cas.14027. |
[10] | Dou L, Jourde-Chiche N. Endothelial toxicity of high glucose and its by-products in diabetic kidney disease[J]. Toxins (Basel),2019,11. doi: 10.3390/toxins11100578. |
[11] | Garcia-Pastor C, Benito-Martinez S, Moreno-Manzano V, et al. Mechanism and consequences of the impaired Hif-1alpha response to hypoxia in human proximal tubular HK-2 cells exposed to high glucose[J]. Sci Rep,2019,9:15868. doi: 10.1038/s41598-019-52310-6. |
[12] | Dunn LL, Kong SMY, Tumanov S, et al. Hmox1(heme oxygenase-1) protects against ischemia-mediated injury via stabilization of HIF-1alpha (hypoxia-inducible factor-1alpha)[J]. Arterioscler Thromb Vasc Biol,2021,41:317-330. doi: 10.1161/ATVBAHA.120.315393. |
[13] | Chaudhary K, Chilakala A, Ananth S, et al. Renal iron accelerates the progression of diabetic nephropathy in the HFE gene knockout mouse model of iron overload[J]. Am J Physiol Renal Physiol,2019,317:F512-f517. doi: 10.1152/ajprenal.00184.2019. |
[14] | Wang Y, Bi R, Quan F, et al. Ferroptosis involves in renal tubular cell death in diabetic nephropathy[J]. Eur J Pharmacol,2020,888:173574. doi: 10.1016/j.ejphar.2020.173574. |
[15] | Jiang N, Zhao H, Han Y, et al. HIF-1α ameliorates tubular injury in diabetic nephropathy via HO-1-mediated control of mitochondrial dynamics[J]. Cell Prolif,2020,53. doi: 10.1111/cpr.12909. |
[16] | Zhang X, Feng J, Li X, et al. Mitophagy in diabetic kidney disease[J]. Front Cell Dev Biol,2021,9:778011. doi: 10.3389/fcell.2021.778011. |
[17] | Chen K, Dai H, Yuan J, et al. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy[J]. Cell Death Dis,2018,9:105. doi: 10.1038/s41419-017-0127-z. |
[18] | 张刘杰, 李静, 吴博. HIF-1介导的自噬在心脏疾病中的研究进展[J]. 基础医学与临床,2021,41:1186-1189. doi: 10.3969/j.issn.1001-6325.2021.08.019. |
[19] | Li W, Xiang Z, Xing Y, et al. Mitochondria bridge HIF signaling and ferroptosis blockage in acute kidney injury[J]. Cell Death Dis,2022,13:308. doi: 10.1038/s41419-022-04770-4. |
[20] | Li C, Zhou J, Liu Z, et al. FSH prevents porcine granulosa cells from hypoxia-induced apoptosis via activating mitophagy through the HIF-1α-PINK1-Parkin pathway[J]. Faseb j,2020,34:3631-3645. doi: 10.1096/fj.201901808RRR. |
[21] | Zheng Y, Huang C, Lu L, et al. STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib[J]. J Hematol Oncol,2021,14:16. doi: 10.1186/s13045-020-01029-3. |
[22] | Madhu V, Boneski PK, Silagi E, et al. Hypoxic regula-tion of mitochondrial metabolism and mitophagy in nucleus pulposus cells is dependent on HIF-1alpha-BNIP3 axis[J]. J Bone Miner Res,2020,35:1504-1524. doi: 10.1002/jbmr.4019. |
[23] | Fu ZJ, Wang ZY, Xu L, et al. HIF-1alpha-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury [J]. Redox Biol,2020,36:101671. doi: 10.1016/j.redox.2020.101671. |
[24] | Sulkshane P, Ram J, Thakur A, et al. Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia[J]. Redox Biol,2021,45:102047. doi: 10.1016/j.redox.2021.102047. |
[25] | Tang SCW, Yiu WH. Innate immunity in diabetic kidney disease[J]. Nat Rev Nephrol,2020,16:206-222. doi: 10.1038/s41581-019-0234-4. |
[26] | Levin A, Reznichenko A, Witasp A, et al. Novel insights into the disease transcriptome of human diabetic glomeruli and tubulointerstitium[J]. Nephrol Dial Transplant,2020,35:2059-2072. doi: 10.1093/ndt/gfaa121. |
[27] | Sur S, Nguyen M, Boada P, et al. FcER1: a novel molecule implicated in the progression of human diabetic kidney disease[J]. Front Immunol,2021,12:769972. doi: 10.3389/fimmu.2021.769972. |
[28] | Liu C, Yang M, Li L, et al. A glimpse of inflammation and anti-inflammation therapy in diabetic kidney disease[J]. Front Physiol,2022,13:909569. doi: 10.3389/fphys.2022.909569. |
[29] | Li ZL, Lv LL, Wang B, et al. The profibrotic effects of MK-8617 on tubulointerstitial fibrosis mediated by the KLF5 regulating pathway[J]. FASEB J,2019,33:12630-12643. doi: 10.1096/fj.201901087RR. |
[1] | SU Lingfeng, WANG Huxia, WANG Yanfeng, SONG Zhangjun. Impact of chronic stress on the development of breast cancer [J]. Basic & Clinical Medicine, 2024, 44(9): 1303-1307. |
[2] | LI Yaoyang, WANG Shuyu, YANG Dan, WU Qunli. Professor LIANG Xiaochun′s experience in the treatment of diabetic kidney disease [J]. Basic & Clinical Medicine, 2024, 44(9): 1335-1340. |
[3] | PENG Qingyi, XU Lingling. Research progress on the type 1 diabetes induced sarcopenia [J]. Basic & Clinical Medicine, 2024, 44(8): 1189-1193. |
[4] | LIU Chong, LIU Yingying, GUO Zhaoan. Progress of specialized pro-resolving mediators in diabetic kidney disease [J]. Basic & Clinical Medicine, 2023, 43(7): 1152-1156. |
[5] | JIANG Qi, YANG Liu, HE Jiaojiao, LI Weixin. Progress of research on role of lipotoxicity in pathogenesis of sarcopenia [J]. Basic & Clinical Medicine, 2023, 43(12): 1886-1890. |
[6] | SUN Hui, CHEN Siyu. Research progress of pathogenesis and treatment of microorganism-related tumors [J]. Basic & Clinical Medicine, 2023, 43(1): 178-182. |
[7] | LIN Bai-bai, QIAN Feng-hua, QIAN Yi-ming, ZHAO Lei, SUN Qi, CHU Meng-yao, SHEN Meng-wen. Research progress of sepsis complicated with capillary leakage syndrome [J]. Basic & Clinical Medicine, 2022, 42(7): 1144-1147. |
[8] | ZHAO Xiao-ling, HE Run-zhi, SUN Yu-jiao, ZHANG Xiao-chong, YANG Lin-fang, WANG Rui, CHENG Fang. Serum IFN-γ is increased in patients with active vitiligo [J]. Basic & Clinical Medicine, 2022, 42(7): 1067-1070. |
[9] | GUO Meng-ran, MIN Hang, YE Yue, XU Xiao-shuang, ZHEN Dong-hu. Research progress of single nucleotide polymorphisms and immune cells in diabetic kidney disease [J]. Basic & Clinical Medicine, 2022, 42(2): 335-339. |
[10] | WU Chang-bao, HAO Yan-lei. Research progress on STAT3 and pathogenesis of Parkinson's disease [J]. Basic & Clinical Medicine, 2022, 42(12): 1935-1938. |
[11] | WANG Hang-hang, WANG Dao-xin. Research advances in NETs and acute respiratory distress syndrome [J]. Basic & Clinical Medicine, 2021, 41(7): 1047-1051. |
[12] | CHEN Yun-kun, LIU Huang, ZHANG Wen-bin, WANG Jie. Analysis of Traditional Chinese Medicine syndrome types in 52 COVID-19 patients with positive nucleic acid retest after discharge [J]. Basic & Clinical Medicine, 2021, 41(4): 558-561. |
[13] | FANG Huang-yi, YOU Chao-guo, PANG Chen, ZHANG Zhong-ding, ZHANG Zhe, KUANG Tong-shuai, SHENG Han-song. Mechanism of in vitro sensitization of temozolomide to MGMT+ glioma cell line by FM19G11 [J]. Basic & Clinical Medicine, 2021, 41(4): 514-520. |
[14] | WANG Hai-yan, HUANG Ming-quan, PAN Guang-rui, WANG Gui-lin, LIANG Bin, QUAN Yi. Hypoxia microenvironment promotes invasion and proliferation of human breast cancer cell line MCF-7 [J]. Basic & Clinical Medicine, 2021, 41(4): 539-544. |
[15] | WANG Yu-long, TENG Wen-bin, SHAN Yue, YAO Liu-xu, HE Rui, LI Yu-hong, ZHU Sheng-mei. Effects of HIF-1α agonist or inhibitor on intestinal mucosal permeability in rats with sepsis [J]. Basic & Clinical Medicine, 2021, 41(11): 1618-1623. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备07012236号
Website Copyright © Basic & Clinical Medicine