[1] |
Laakso M, Kuusisto J. Insulin resistance and hyperglycaemia in cardiovascular disease development[J]. Nat Rev Endocrinol, 2014, 10:293-302.
|
[2] |
Ormazabal V, Nair S, Elfeky O, et al. Association between insulin resistance and the development of cardiovascular disease[J]. Cardiovasc Diabetol, 2018, 17:122.doi:10.1186/s12933-018-0762-4.
|
[3] |
Di Pino A, Defronzo RA. Insulin resistance and atherosclerosis:implications for insulin-sensitizing agents[J]. Endocr Rev, 2019, 40:1447-1467.
|
[4] |
Saklayen MG. The global epidemic of the metabolic syndrome[J]. Curr Hypertens Rep, 2018, 20:12.doi:10.1007/s11906-018-0812-z.
|
[5] |
Koren D, Taveras EM. Association of sleep disturbances with obesity, insulin resistance and the metabolic syn-drome[J]. Metabolism, 2018, 84:67-75.
|
[6] |
Bornfeldt KE, Tabas L. Insulin resistance, hyperglycemia, and atherosclerosis[J]. Cell Metab, 2011, 14:575-585.
|
[7] |
Biobaku F, Ghanim H, Batra M, et al. Macronutrient-mediated inflammation and oxidative stress:relevance to insulin resistance, obesity, and atherogenesis[J]. J Clin Endocrinol Metab, 2019, 104:6118-6128.
|
[8] |
Schulman IG. Liver X receptors link lipid metabolism and inflammation[J]. FEBS lett, 2017, 591:2978-2991.
|
[9] |
Grandl G, Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome[J]. Semin Immunopathol, 2018, 40:215-224.
|
[10] |
Ormazabal V, Nair S, Elfeky O, et al. Association between insulin resistance and the development of cardiovascular disease[J]. Cardiovasc Diabetol, 2018, 17:122.doi:10.1186/s12933-018-0762-4.
|
[11] |
Onyango AN, Claudio C, Cabello-Verrugio C. Cellular stresses and stress responses in the pathogenesis of insulin resistance[J]. Oxid Med Cell Longev, 2018, 2018:4321714-4321727.
|
[12] |
Zhao L, Varghese Z, Moorhead JF, et al. CD36 and lipid metabolism in the evolution of atherosclerosis[J]. Brit Med Bull, 2018, 126:101-112.
|
[13] |
Glatz J, Luiken J. Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization[J]. J Lipid Res, 2018, 59:1084-1093.
|
[14] |
Son N, Basu D, Samovski D, et al. Endothelial cell CD36 optimizes tissue fatty acid uptake[J]. J Clin Invest, 2018, 128:4329-4342.
|
[15] |
Deng Y, Li G, Chang D, et al. YKL-40 as a novel biomarker in cardio-metabolic disorders and inflammatory diseases[J]. Clin Chim Acta, 2020, 511:40-46.
|
[16] |
Akboga MK. Increased serum YKL-40 level is associated with the presence and severity of metabolic syndrome[J]. Anato J Cardiol, 2016, 16:953-958.
|
[17] |
Park HK, Kwak MK, Kim HJ, et al. Linking resistin, inflammation, and cardiometabolic diseases[J]. Korean J Intern Med, 2017, 32:239-247.
|
[18] |
Helfer G, Wu Q. Chemerin:a multifaceted adipokine involved in metabolic disorders[J]. J Endocrinol, 2018, 238:R79-R94.
|
[19] |
Zhang Z, Wang J, Wang H. Correlation of blood glucose, serum chemerin and insulin resistance with NAFLD in patients with type 2 diabetes mellitus[J]. Exp Ther Med, 2018, 15:2936-2940.
|
[20] |
Park SE, Park CY, Sweeney G. Biomarkers of insulin sensitivity and insulin resistance:past, present and future[J]. Crit Rev Clin Lab Sci, 2015, 52:180-190.
|
[21] |
Ahmad R, Thomas R, Kochumon S, et al. Increased adipose tissue expression of IL-18R and its ligand IL-18 associates with inflammation and insulin resistance in obesity[J]. Immun Inflamm Dis, 2017, 5:318-335.
|
[22] |
Gong Z, Zhang X, Su K, et al. Deficiency in AIM2 induces inflammation and adipogenesis in white adipose tissue leading to obesity and insulin resistance[J]. Diabetologia, 2019, 62:2325-2339.
|
[23] |
Akbarzadeh M, Eftekhari MH, Dabbaghmanesh MH, et al. Serum IL-18 and hsCRP correlate with insulin resistance without effect of calcitriol treatment on type 2 diabetes[J]. Iran J Immunol, 2013, 10:167-176.
|
[24] |
Bankul A, Mitra P, Suri S, et al. Increased serum IL-18 levels and IL-18R expression in newly diagnosed type 2 diabetes mellitus[J]. Minerva Endocrinol, 2020.doi:10.23736/s0391-1977.20.03271-x.
|