[1]Sato M, Kawakami T, Kadota Y, et al. Obesity and metallothionein [J]. Curr Pharm Biotechnol, 2013,14:432-440. [2]Butler MG, Wang K, Marshall JD, et al. Coding and noncoding expression patterns associated with rare obesity-related disorders: Prader-Willi and Alström syndromes [J]. Adv Genomics Genet, 2015,2015:53-75. [3]Kawakami T, Takasaki S, Kadota Y, et al. Regulatory role of metallothionein-1/2 on development of sex differences in a high-fat diet-induced obesity [J]. Life Sci, 2019,226:12-21. [4]Lindeque JZ, Jansen van Rensburg PJ, Louw R, et al. Obesity and metabolomics: metallothioneins protect against high-fat diet-induced consequences in metallothionein knockout mice [J]. OMICS, 2015,19:92-103. [5]Byun HR, Kim DK, Koh JY. Obesity and downregulated hypothalamic leptin receptors in male metallothionein-3-null mice [J]. Neurobiol Dis, 2011,44:125-132. [6]Kadota Y, Toriuchi Y, Aki Y, et al. Metallothioneins regulate the adipogenic differentiation of 3T3-L1 cells via the insulin signaling pathway [J]. PLoS One, 2017,12:e0176070. doi: 10.1371/journal.pone.0176070. [7]Wang S, Gu J, Xu Z, et al. Zinc rescues obesity-induced cardiac hypertrophy via stimulating metallothionein to suppress oxidative stress-activated BCL10/CARD9/p38 MAPK pathway [J]. J Cell Mol Med, 2017,21:1182-1192. [8]Song M, Vos MB, McClain CJ. Copper-fructose interactions: a novel mechanism in the pathogenesis of NAFLD [J]. Nutrients, 2018,10:1815. [9]Hwang S, He Y, Xiang X, et al. Interleukin-22 ameliorates neutrophil-driven nonalcoholic steatohepatitis through multiple targets [J]. Hepatology, 2020,72:412-429. [10]Ackerman Z, Skarzinski G, Grozovski M, et al. Effects of antihypertensive and triglyceride-lowering agents on hepatic copper concentrations in rats with fatty liver disease [J]. Basic Clin Pharmacol Toxicol, 2014,115:545-551. [11]Liang T, Zhang Q, Sun W, et al. Zinc treatment prevents type 1 diabetes-induced hepatic oxidative damage, endoplasmic reticulum stress, and cell death, and even prevents possible steatohepatitis in the OVE26 mouse model: Important role of metallothionein [J]. Toxicol Lett, 2015,233:114-124. [12]Sekovanić A, Jurasović J, Piasek M. Metallothionein 2A gene polymorphisms in relation to diseases and trace element levels in humans [J]. Arh Hig Rada Toksikol, 2020,71:27-47. [13]Park Y, Zhang J, Cai L. Reappraisal of metallothionein: Clinical implications for patients with diabetes mellitus [J]. J Diabetes, 2018,10:213-231. [14]Giacconi R, Cai L, Costarelli L, et al. Implications of impaired zinc homeostasis in diabetic cardiomyopathy and nephropathy [J]. Biofactors, 2017,43:770-784. [15]Raudenska M, Dvorakova V, Pacal L, et al. Levels of heavy metals and their binding protein metallothionein in type 2 diabetics with kidney disease [J]. J Biochem Mol Toxicol, 2017,31. doi: 10.1002/jbt.21891. [16]Park L, Min D, Kim H, et al. The combination of metallothionein and superoxide dismutase protects pancreatic β cells from oxidative damage [J]. Diabetes Metab Res Rev, 2011,27:802-808. [17]Chen S, Han J, Liu Y. Dual opposing roles of metallothionein overexpression in C57BL/6J mouse pancreatic β-cells [J]. PLoS One, 2015,10:e0137583. doi: 10.1371/journal.pone.0137583. [18]Bensellam M, Shi YC, Chan JY, et al. Metallothionein 1 negatively regulates glucose-stimulated insulin secretion and is differentially expressed in conditions of beta cell compensation and failure in mice and humans [J]. Diabetologia, 2019,62:2273-2286. |