[1]CHIU JJ, CHIEN S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives[J]. Physiol Rev, 2011, 91: 327-387. [2]ZHOU J, LI YS, CHIEN S. Shear stress-initiated signaling and its regulation of endothelial function[J]. Arterioscler Thromb Vasc Biol, 2014, 34: 2191-2198. [3]XU S. Therapeutic potential of blood flow mimetic compounds in preventing endothelial dysfunction and atherosclerosis[J]. Pharmacol Res, 2020, 155: 104737. [4]LE NT, HEO KS, TAKEI Y, et al. A crucial role for p90RSK-mediated reduction of ERK5 transcriptional activity in endothelial dysfunction and atherosclerosis[J]. Circulation, 2013, 127: 486-499. [5]ZHOU G, HAMIK A, NAYAK L, et al. Endothelial Kruppel-like factor 4 protects against atherothrombosis in mice[J]. J Clin Invest, 2012, 122: 4727-4731. [6]NIU N, XU S, XU Y, et al. Targeting mechanosensitive transcription factors in atherosclerosis[J]. Trends Pharmacol Sci, 2019, 40: 253-266. [7]READ MA, WHITLEY MZ, WILLIAMS AJ, et al. NF-kappa B and I kappa B alpha: an inducible regulatory system in endothelial activation[J]. J Exp Med, 1994, 179: 503-512. [8]PAMUKCU B, LIP GY, SHANTSILA E. The nuclear factor--kappa B pathway in atherosclerosis: a potential therapeutic target for atherothrombotic vascular disease[J]. Thromb Res, 2011, 128: 117-123. [9]SANTIAGO FS, LI Y, ZHONG L, et al. Truncated YY1 interacts with BASP1 through a 339KLK341 motif in YY1 and suppresses vascular smooth muscle cell growth and intimal hyperplasia after vascular injury[J]. Cardiovasc Res, 2021, 117: 2395-2406. [10]BECK K, WU BJ, NI J, et al. Interplay between heme oxygenase-1 and the multifunctional transcription factor yin yang 1 in the inhibition of intimal hyperplasia[J]. Circ Res, 2010, 107: 1490-1497. [11]WEI SY, SHIH YT, WU HY, et al. Endothelial Yin Yang 1 phosphorylation at S118 induces atherosclerosis under flow[J]. Circ Res, 2021,29:1158-1174. [12]SARVAGALLA S, KOLAPALLI SP, VALLABHAPURAPU S. The two sides of YY1 in cancer: afriend and a foe[J]. Front Oncol, 2019, 9: 1230.doi: 10.3389/fonc.2019.01230 [13]QIN W, YANG H, LIU G, et al. Activating transcription factor 3 is a potential target and a new biomarker for the prognosis of atherosclerosis[J]. Hum Cell, 2021, 34: 49-59. [14]THOMPSON MR, XU D, WILLIAMS BR. ATF3 transcription factor and its emerging roles in immunity and cancer[J]. J Mol Med (Berl), 2009, 87: 1053-1060. [15]TEASDALE JE, HAZELL GG, PEACHEY AM, et al. Cigarette smoke extract profoundly suppresses TNFalpha-mediated proinflammatory gene expression through upregulation of ATF3 in human coronary artery endothelial cells[J]. Sci Rep, 2017, 7: 39945.doi: 10.1038/srep39945. [16]PENG J, LE CY, XIA B, et al. Research on the correlation between activating transcription factor 3 expression in the human coronary artery and atherosclerotic plaque stability[J]. BMC Cardiovasc Disord, 2021, 21: 356.doi: 10.1186/s12872-021-02161-9. [17]FELIZOLA SJ, NAKAMURA Y, OZAWA Y, et al. Activat-ing transcription factor 3 (ATF3) in the human adrenal cortex: its possible involvement in aldosterone biosynthesis[J]. Tohoku J Exp Med, 2014, 234: 249-254. [18]CAI Y, ZHANG C, NAWA T, et al. Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells: activation of c-Jun NH(2)-terminal kinase and promoter response element[J]. Blood, 2000, 96: 2140-2148. [19]KAWAUCHI J, ZHANG C, NOBORI K, et al. Transcriptional repressor activating transcription factor 3 protects human umbilical vein endothelial cells from tumor necrosis factor-alpha-induced apoptosis through down-regulation of p53 transcription[J]. J Biol Chem, 2002, 277: 39025-39034. [20]WANG CM, BRENNAN VC, GUTIERREZ NM, et al. SUMOylation of ATF3 alters its transcriptional activity on regulation of TP53 gene[J]. J Cell Biochem, 2013, 114: 589-598. [21]MIN E, SCHWARTZ MA. Translocating transcription factors in fluid shear stress-mediated vascular remodeling and disease[J]. Exp Cell Res, 2019, 376: 92-97. [22]XU S, KOROLEVA M, YIN M, et al. Atheroprotective laminar flow inhibits Hippo pathway effector YAP in endothelial cells[J]. Transl Res, 2016, 176: 18-28 e2. [23]WANG L, LUO JY, LI B, et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow[J]. Nature, 2016, 540: 579-582. [24]WANG KC, YEH YT, NGUYEN P, et al. Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis[J]. Proc Natl Acad Sci U S A, 2016, 113: 11525-11530. [25]LIU-CHITTENDEN Y, HUANG B, SHIM JS, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP[J]. Genes Dev, 2012, 26: 1300-1305. [26]WU P, LIU Z, ZHAO T, et al. Lovastatin attenuates angiotensin II induced cardiovascular fibrosis through the suppression of YAP/TAZ signaling[J]. Biochem Biophys Res Commun, 2019, 512: 736-741. [27]WAN L, ZHANG Q, WANG S, et al. Gambogic acid impairs tumor angiogenesis by targeting YAP/STAT3 signaling axis[J]. Phytother Res, 2019, 33: 1579-1591. [28]LIU D, LV H, LIU Q, et al. Atheroprotective effects of methotrexate via the inhibition of YAP/TAZ under distur-bed flow[J]. J Transl Med, 2019, 17: 378.doi: 10.1186/s12967-019-02135-8 [29]MACDONALD BT, TAMAI K, HE X. Wnt/beta-catenin signaling: components, mechanisms, and diseases[J]. Dev Cell, 2009, 17: 9-26. [30]GOODWIN AM, D'AMORE PA. Wnt signaling in the vasculature[J]. Angiogenesis, 2002, 5: 1-9. [31]REIS M, LIEBNER S. Wnt signaling in the vasculature[J]. Exp Cell Res, 2013, 319: 1317-1323. [32]LI R, BEEBE T, JEN N, et al. Shear stress-activated Wnt-angiopoietin-2 signaling recapitulates vascular repair in zebrafish embryos[J]. Arterioscler Thromb Vasc Biol, 2014, 34: 2268-2275. [33]GELFAND BD, MELLER J, PRYOR AW, et al. Hemodynamic activation of beta-catenin and T-cell-specific transcription factor signaling in vascular endothelium regulates fibronectin expression[J]. Arterioscler Thromb Vasc Biol, 2011, 31: 1625-1633. [34]BASTAKOTY D, SARASWATI S, JOSHI P, et al. Temporary, systemic inhibition of the WNT/beta-catenin pathway promotes regenerative cardiac repair following myocardial infarct[J]. Cell Stem Cells Regen Med, 2016, 2.doi: 10.16966/2472-6990.111 [35]CHEN L, ZHUANG J, SINGH S, et al. XAV939 inhibits intima formation by decreasing vascular smooth muscle cell proliferation and migration through blocking Wnt signaling[J]. J Cardiovasc Pharmacol, 2016, 68: 414-424. [36]LI M, WILSON DM, 3rd. Human apurinic/apyrimidinic endonuclease 1[J]. Antioxid Redox Signal, 2014, 20: 678-707. [37]PARK MS, KIM CS, JOO HK, et al. Cytoplasmic localization and redox cysteine residue of APE1/Ref-1 are associated with its anti-inflammatory activity in cultured endothelial cells[J]. Mol Cells, 2013, 36: 439-445. [38]ZHAO CR, YANG FF, CUI Q, et al. Vitexin inhibits APEX1 to counteract the flow-induced endothelial inflammation[J]. Proc Natl Acad Sci U S A, 2021, 118: e2115158118.doi: 10.1073/pnas.2115158118. [39]LEE IW, YOON J, LEE G, et al. Identification of new potential APE1 inhibitors by pharmacophore modeling and molecular docking[J]. Genomics Inform, 2017, 15: 147-155. [40]LAEV SS, SALAKHUTDINOV NF, LAVRIK OI. Inhibi-tors of nuclease and redox activity of apurinic/apyrimi-dinic endonuclease 1/redox effector factor 1 (APE1/Ref-1)[J]. Bioorg Med Chem, 2017, 25: 2531-2544. [41]LUO M, DELAPLANE S, JIANG A, et al. Role of the multifunctional DNA repair and redox signaling protein Ape1/Ref-1 in cancer and endothelial cells: small-molecule inhibition of the redox function of Ape1[J]. Antioxid Redox Signal, 2008, 10: 1853-1867. [42]MARTINEZ MOLINA D, JAFARI R, IGNATUSHCHENKO M, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay[J]. Science, 2013, 341: 84-87. [43]NAKAJIMA H, MOCHIZUKI N. Flow pattern-dependent endothelial cell responses through transcriptional regula-tion[J]. Cell Cycle, 2017, 16: 1893-1901. |