[1]Jia X, He X, Huang C, et al. Protein translation: biological processes and therapeutic strategies for human diseases[J]. Signal Transduct Target Ther, 2024, 9: 44. doi: 10.1038/s41392-024-01749-9. [2]Gao X, Jin Y, Zhu W, et al. Regulation of eukaryotic translation initiation factor 4E as a potential anticancer strategy[J]. J Med Chem, 2023, 66: 12678-12696. [3]Panwar V, Singh A, Bhatt M, et al. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease[J]. Signal Transduct Target Ther, 2023, 8: 375. doi: 10.1038/s41392-023-01608-z. [4]Zhao Y, Li C, Zhang Y, et al. CircTMTC1 contributes to nasopharyngeal carcinoma progression through targeting miR-495-MET-eIF4G1 translational regulation axis[J]. Cell Death Dis, 2022, 13: 250. doi: 10.1038/s41419-022-04686-z. [5]Zhu Y, Xiao B, Liu M, et al. N6-methyladenosine-modified oncofetal lncRNA MIR4435-2HG contributed to stemness features of hepatocellular carcinoma cells by regulating rRNA 2'-O methylation[J]. Cell Mol Biol Lett, 2023, 28: 89. doi: 10.1186/s11658-023-00493-2. [6]Yeh DW, Zhao X, Siddique HR, et al. MSI2 promotes translation of multiple IRES-containing oncogenes and virus to induce self-renewal of tumor initiating stem-like cells[J]. Cell Death Discov, 2023, 9: 141. doi: 10.1038/s41420-023-01427-9. [7]Kampen KR, Sulima SO, Verbelen B, et al. The ribosomal RPL10 R98S mutation drives IRES-dependent BCL-2 translation in T-ALL[J]. Leukemia, 2019, 33: 319-332. [8]Ryan CS, Schröder M. The human DEAD-box helicase DDX3X as a regulator of mRNA translation[J]. Front Cell Dev Biol, 2022, 10: 1033684. doi: 10.3389/fcell.2022.1033684. [9]Benboubker V, Boivin F, Dalle S, et al. Cancer cell phenotype plasticity as a driver of immune escape in melano-ma[J]. Front Immunol, 2022, 13: 873116. doi: 10.3389/fimmu.2022.873116. [10]Dinh NTM, Nguyen TM, Park MK, et al. Y-Box binding protein 1: unraveling the multifaceted role in cancer development and therapeutic potential[J]. Int J Mol Sci, 2024, 25:717. doi: 10.3390/ijms25020717. [11]Kovalski JR, Kuzuoglu-Ozturk D, Ruggero D. Protein synthesis control in cancer: selectivity and therapeutic targeting[J]. EMBO J, 2022, 41: e109823. doi: 10.15252/embj.2021109823. [12]Zhang H, Zhou J, Li J, et al. N6-methyladenosine promotes translation of VEGFA to accelerate angiogenesis in lung cancer[J]. Cancer Res, 2023, 83: 2208-2225. [13]Robichaud N, Hsu BE, Istomine R, et al. Translational control in the tumor microenvironment promotes lung metastasis: phosphorylation of eIF4E in neutrophils[J]. Proc Natl Acad Sci USA, 2018, 115: e2202-e2209. [14]Wu C, Wang S, Cao T, et al. Newly discovered mechanisms that mediate tumorigenesis and tumour progression: circRNA-encoded proteins[J]. J Cell Mol Med, 2023, 27: 1609-1620. [15]Fabbri L, Chakraborty A, Robert C, et al. The plasticity of mRNA translation during cancer progression and therapy resistance[J]. Nat Rev Cancer, 2021, 21: 558-577. [16]Xue C, Gu X, Li G, et al. Expression and functional roles of eukaryotic initiation factor 4A family proteins in human cancers[J]. Front Cell Dev Biol, 2021, 9: 711965. doi: 10.3389/fcell.2021.711965. [17]Zindy P, Bergé Y, Allal B, et al. Formation of the eIF4F translation-initiation complex determines sensitivity to anticancer drugs targeting the EGFR and HER2 receptors[J]. Cancer Res, 2011, 71: 4068-4073. [18]Biswas B, Guemiri R, Cadix M, et al. Differential effects on the translation of immune-related alternatively polyadenylated mRNAs in melanoma and T cells by eIF4A inhibition[J]. Cancers, 2022, 14:1177. doi: 10.3390/cancers14051177. [19]Marafie SK, Al-Mulla F, Abubaker J. mTOR: its critical role in metabolic diseases, cancer, and the aging process[J]. Int J Mol Sci, 2024, 25. doi: 10.3390/ijms25116141. [20]Coleman N, Stephen B, Fu S, et al. Phase Ⅰ study of sapanisertib (CB-228/TAK-228/MLN0128) in combin-ation with ziv-aflibercept in patients with advanced solid tumors[J]. Cancer Med, 2024, 13: e6877. doi: 10.1002/cam4.6877. [21]Chen X, An Y, Tan M, et al. Biological functions and research progress of eIF4E[J]. Front Oncol, 2023, 13: 1076855. doi: 10.3389/fonc.2023.1076855. [22]Duffy AG, Makarova-Rusher OV, Ulahannan SV, et al. Modulation of tumor eIF4E by antisense inhibition: a phase Ⅰ/Ⅱ translational clinical trial of ISIS 183750-an antisense oligonucleotide against eIF4E-in combination with irinotecan in solid tumors and irinotecan-refractory colorectal cancer[J]. Int J Cancer, 2016, 139: 1648-1657. [23]Fang C, Xie H, Zhao J, et al. eIF4E-eIF4G complex inhibition synergistically enhances the effect of sorafenib in hepatocellular carcinoma[J]. Anticancer Drug, 2021, 32: 822-828. [24]Nishida Y, Zhao R, Heese LE, et al. Inhibition of translation initiation factor eIF4a inactivates heat shock factor 1 (HSF1) and exerts anti-leukemia activity in AML[J]. Leukemia, 2021, 35: 2469-2481. [25]Kayastha F, Herrington NB, Kapadia B, et al. Novel eIF4A1 inhibitors with anti-tumor activity in lymphoma[J]. Mol Med, 2022, 28: 101. doi: 10.1186/s10020-022-00534-0. |