[1] |
Barnett BP, Handa JT. Retinal microenvironment imbal-ance in dry age-related macular degeneration: a mini-review[J]. Gerontology, 2013, 59: 297-306.
|
[2] |
Wu DM, Ji XK, Ivanchenko MV, et al. Nrf2 overexpression rescues the RPE in mouse models of retinitis pigmentosa[J]. JCI Insight, 2021, 6: e145029. doi: 10.1172/jci.insight.145029.
|
[3] |
Chen Q, Lin H, Li S, et al. Mini-αA upregulates the miR-155-5p target gene CDK2 and plays an antiapoptotic role in retinal pigment epithelial cells during oxidative stress[J]. J Ophthalmol. 2023, 2023: 6713094. doi: 10.1155/2023/6713094.
|
[4] |
Lee H, Lee HY, Chae JB, et al. Single-cell transcriptome of the mouse retinal pigment epithelium in response to a low-dose of doxorubicin[J]. Commun Biol, 2022, 5: 722. doi: 10.1038/s42003-022-03676-3.
|
[5] |
Wang S, Liu Y, Liu Y, et al. Reversed senescence of retinal pigment epithelial cell by coculture with embryonic stem cell via the TGFβ and PI3K pathways[J]. Front Cell Dev Biol, 2020, 8: 588050. doi: 10.3389/fcell.2020.588050.
|
[6] |
Ren J, Ren A, Deng X, et al. Long-chain polyunsatura-ted fatty acids and their metabolites regulate inflammation in age-related macular degeneration[J]. J Inflamm Res. 2022, 15: 865-880.
|
[7] |
Valencia E, García M, Fernández-Vega B, et al. Targeted analysis of tears revealed specific altered metal homeostasis in age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2022, 63: 10. doi: 10.1167/iovs.63.4.10.
|
[8] |
Yang M, Tsui MG, Tsang JKW, et al. Involvement of FSP1-CoQ(10)-NADH and GSH-GPx-4 pathways in retinal pigment epithelium ferroptosis[J]. Cell Death Dis, 2022, 13: 468. doi: 10.1038/s41419-022-04924-4.
|
[9] |
Orozco LD, Chen HH, Cox C, et al. Integration of eQTL and a single-cell atlas in the human eye identifies causal genes for age-related macular degeneration[J]. Cell Rep, 2020, 30: 1246-1259.
|
[10] |
Liu Y, Bell BA, Song Y, et al. Deuterated docosahexaenoic acid protects against oxidative stress and geographic atrophy-like retinal degeneration in a mouse model with iron overload[J]. Aging Cell, 2022, 21: e13579. doi: 10.1111/acel.13579.
|
[11] |
Nashine S, Cohen P, Wan J, et al. Effect of Humanin G(HNG) on inflammation in age-related macular degeneration(AMD)[J]. Aging, 2022, 14: 4247-4269.
|
[12] |
Lin R, Yu J. The role of NAD(+) metabolism in macrophages in age-related macular degeneration[J]. Mech Ageing Dev, 2023, 209: 111755. doi: 10.1016/j.mad.2022.111755.
|
[13] |
Vreones M, Mustapic M, Moaddel R, et al. Oral nicotinamide riboside raises NAD+ and lowers biomarkers of neurodegenerative pathology in plasma extracellular vesicles enriched for neuronal origin[J]. Aging cell, 2023, 22: e13754. doi: 10.1111/acel.13754.
|
[14] |
Ren C, Hu C, Wu Y, et al. Nicotinamide mononucleotide ameliorates cellular senescence and inflammation caused by sodium iodate in RPE[J]. Oxid Med Cell Longev, 2022, 2022: 5961123. doi: 10.1155/2022/5961123.
|
[15] |
Lückoff A, Scholz R, Sennlaub F, et al. Comprehensive analysis of mouse retinal mononuclear phagocytes[J]. Nat Protoc, 2017, 12: 1136-1150.
|
[16] |
Datta S, Cano M, Satyanarayana G, et al. Mitophagy initiates retrograde mitochondrial-nuclear signaling to guide retinal pigment cell heterogeneity[J]. Autophagy, 2022, 19: 1-18.
|
[17] |
Shen G, Li Y, Zeng Y, et al. Kallistatin deficiency induces the oxidative stress-related epithelial-mesenchymal transition of retinal pigment epithelial cells: a novel protagonist in age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2023, 64: 15. doi: 10.1167/iovs.64.12.15.
|
[18] |
Blasiak J, Kaarniranta K. Secretory autophagy: a turn key for understanding AMD pathology and developing new therapeutic targets?[J]. Expert Opin Ther Targets, 2022, 26: 883-895.
|
[19] |
Wang K, Chen YS, Chien HW, et al. Melatonin inhibits NaIO3-induced ARPE-19 cell apoptosis via suppression of HIF-1α/BNIP3-LC3B/mitophagy signaling[J]. Cell Biosci, 2022, 12: 133. doi: 10.1186/s13578-022-00879-3.
|
[20] |
Scuderi G, Troiani E, Minnella AM. Gut microbiome in retina health: the crucial role of the gut-retina axis[J]. Front Microbiol, 2022, 12: 726792. doi: 10.3389/fmicb.2021.726792.
|
[21] |
Cao YQ, Li YL, Gkerdi A, et al. Association of nutrients, specific dietary patterns, and probiotics with age-related macular degeneration[J]. Curr Med Chem, 2022, 29: 6141-6158.
|
[22] |
Zou GP, Wang T, Xiao JX, et al. Lactate protects against oxidative stress-induced retinal degeneration by activating autophagy[J]. Free Radical Biol Med, 2023, 194: 209-219.
|
[23] |
Abokyi S, To CH, Lam TT, et al. Central role of oxidative stress in age-related macular degeneration: evidence from a review of the molecular mechanisms and animal models[J]. Oxid Med Cell Longev, 2020, 2020: 7901270. doi: 10.1155/2020/7901270.
|