Basic & Clinical Medicine ›› 2024, Vol. 44 ›› Issue (4): 422-427.doi: 10.16352/j.issn.1001-6325.2024.04.0422
• Special Issues:Nutrition in Pregnancy • Previous Articles Next Articles
LI Yunlong, LI Rui, ZHANG Yuping, WANG Rui, LIU Yanping*
Received:
2024-02-26
Revised:
2024-02-29
Online:
2024-04-05
Published:
2024-03-25
Contact:
*liuyp1227@vip.sina.com
CLC Number:
LI Yunlong, LI Rui, ZHANG Yuping, WANG Rui, LIU Yanping. Zinc deficiency during pregnancy and its effect on pregnancy outcome[J]. Basic & Clinical Medicine, 2024, 44(4): 422-427.
[1] | Nosrati R, Kheirouri S, Ghodsi R, et al. The effects of zinc treatment on matrix metalloproteinases: A systematic review[J]. Trace Elem Med Biol, 2019, 56: 107-115. doi:10.1016/j.jtemb.2019.08.001. |
[2] | Bailey RL, West KP, Black RE. The epidemiology of global micronutrient deficiencies[J]. Ann Nutr Metab, 2015, 66 Suppl 2: 22-33. |
[3] | Garner TB, Hester JM, Carothers A, et al. Role of zinc in female reproduction[J]. Biol Reprod, 2021, 104: 976-994. doi:10.1093/biolre/ioab023. |
[4] | Yin S, Duan M, Fang B, et al. Zinc homeostasis and regulation: Zinc transmembrane transport through transporters[J]. Crit Rev Food Sci Nutr, 2023, 63: 7627-7637. doi:10.1080/10408398.2022.2048292. |
[5] | Grzeszczak K, Kwiatkowski S, Kosik-Bogacka D. The role of Fe, Zn, and Cu in pregnancy[J]. Biomolecules, 2020, 10: 1176. doi:10.3390/biom10081176. |
[6] | Keats EC, Haider BA, Tam E, et al. Multiple-micronutrient supplementation for women during pregnancy[J]. Cochrane Database Syst Rev, 2019, 3: CD004905. doi:10.1002/14651858.CD004905.pub6. |
[7] | Pouraram H, Djazayery A, Mohammad K, et al. Second national integrated micronutrient survey in Iran: study design and preliminary findings[J]. Arch Iran Med, 2018, 21: 137-144. |
[8] | Liu XB, Lu JX, Wang LJ, et al. Evaluation of serum zinc status of pregnant women in the China Adult Chronic Disease and Nutrition Surveillance(CACDNS) 2015[J]. Nutrients, 2021, 13: 1375. doi:10.3390/nu13041375. |
[9] | 徐月. 孕中期锌营养与出生结局关系的前瞻性队列研究[D]. 武汉: 华中科技大学, 2023: 26-30. doi:10.27157/d.cnki.ghzku.2021.005890. |
[10] | 杨钰诗, 卢细兰, 思利换, 等. 孕期全血镁钙锰铁铜锌铅元素检测结果分析[J]. 微量元素与健康研究, 2024, 41: 60-62. |
[11] | 刘兆敏, 蒲元林, 吴慧捷, 等. 不同孕期微量元素水平对胎儿生长受限的预测作用[J]. 中国全科医学, 2020, 23: 4059-4063. |
[12] | 汪旭虹, 王小华. 妊娠期妇女营养状况与新生儿生长发育的关联分析[J]. 中国妇幼健康研究, 2021, 32: 269-272. |
[13] | Gohari H, Khajavian N, Mahmoudian A, et al. Copper and zinc deficiency to the risk of preterm labor in pregnant women: a case-control study[J]. BMC Pregnancy Childbirth, 2023, 23: 366. doi:10.1186/s12884-023-05625-2. |
[14] | 许培群, 曹怡, 周莲. 妊娠期维生素D 维生素E 钙元素及锌元素水平与早产的相关性分析[J]. 中国妇幼保健, 2020, 35: 3758-3760. |
[15] | Ren M, Zhao J, Wang B, et al. Associations between hair levels of trace elements and the risk of preterm birth among pregnant women: A prospective nested case-control study in Beijing Birth Cohort(BBC), China[J]. Environ Int, 2022, 158: 106965. doi:10.1016/j.envint.2021.106965. |
[16] | Ren M, Wang L, Wen L, et al. Association between female circulating heavy metal concentration and abortion: a systematic review and meta-analysis[J]. Front Endocrinol, 2023, 14: 1216507. doi:10.3389/fendo.2023.1216507. |
[17] | Hu Y, Zhang D, Zhang Q, et al. Serum Cu, Zn and IL-1β levels may predict fetal miscarriage risk after IVF cycles: a nested case-control study[J]. Biol Trace Elem Res, 2023. doi:10.1007/s12011-023-03621-3. |
[18] | Sami AS, Suat E, Alkis I, et al. The role of trace element, mineral, vitamin and total antioxidant status in women with habitual abortion[J]. Matern-Fetal Neonatal Med, 2021, 34: 1055-1062. doi:10.1080/14767058.2019.1623872. |
[19] | Sairoz, Prabhu K, Poojari VG, et al. Maternal serum zinc, copper, magnesium, and iron in spontaneous abortions[J]. Indian J Clin Biochem, 2023, 38: 128-131. doi:10.1007/s12291-022-01043-x. |
[20] | Wang H, Hu YF, Hao JH, et al. Maternal zinc deficiency during pregnancy elevates the risks of fetal growth restriction: a population-based birth cohort study[J]. Sci Rep, 2015, 5: 11262. doi:10.1038/srep11262. |
[21] | Osredkar J, GeršakM, Karas Kuelički N, et al. Association of Zn and Cu levels in cord blood and maternal milk with pregnancy outcomes among the Slovenian population[J]. Nutrients, 2022, 14: 4667. doi:10.3390/nu14214667. |
[22] | Jin S, Hu C, Zheng Y. Maternal serum zinc level is associated with risk of preeclampsia: A systematic review and meta-analysis[J]. Front Public Health, 2022, 10: 968045. doi:10.3389/fpubh.2022.968045. |
[23] | Uddin SMN, Haque M, Barek MA, et al. Analysis of serum calcium, sodium, potassium, zinc, and iron in patients with pre-eclampsia in Bangladesh: A case-control study[J]. Health Sci Rep, 2023, 6: e1097. doi:10.1002/hsr2.1097. |
[24] | Kurlak LO, Scaife PJ, Briggs LV, et al. Alterations in Antioxidant Micronutrient Concentrations in Placental Tissue, Maternal Blood and Urine and the Fetal Circulation in Pre-eclampsia[J]. Int J Mol Sci, 2023, 24: 3579. doi:10.3390/ijms24043579. |
[25] | Raghu R, Kurlak LO, Lee ED, et al. The differential placental expression of ERp44 and pre-eclampsia; association with placental zinc, the ERAP1 and the renin-angiotensin-system[J]. Placenta, 2023, 134: 9-14. |
[26] | Zhu G, Zheng T, Xia C, et al. Plasma levels of trace element status in early pregnancy and the risk of gestational diabetes mellitus: A nested case-control study[J]. Trace Elem Med Biol, 2021, 68: 126829. doi:10.1016/j.jtemb.2021.126829. |
[27] | Mesdaghinia E, Naderi F, Bahmani F, et al. The effects of zinc supplementation on clinical response and metabolic profiles in pregnant women at risk for intrauterine growth restriction: a randomized, double-blind, placebo-control-led trial[J]. Matern-Fetal Neonatal Med, 2021, 34: 1382-1388. |
[28] | Lugo NT, Trujillo ÁM, Martínez MH. Serum copper, zinc, calcium and magnesium levels in mothers with offspring affected by neural tube defects: a case-control study[J]. Rev Cuba Investig Bioméd, 2019, 38: 1-9. |
[29] | Houghton LA, Parnell R, Thomson CD, et al. Serum zinc is a major predictor of anemia and mediates the effect of selenium on hemoglobin in school-aged children in a nationally representative survey in New Zealand[J]. J Nutr, 2016, 146: 1670-1676. doi:10.3945/jn.116.235127. |
[30] | Hennigar SR, Lieberman HR, Fulgoni VL, et al. Serum zinc concentrations in the US population are related to sex, age, and time of blood draw but not dietary or supplemental zinc[J]. J Nutr, 2018, 148: 1341-1351. |
[31] | Gupta S, Brazier AKM, Lowe NM. Zinc deficiency in low- and middLe-income countries: prevalence and approaches for mitigation[J]. Hum Nutr Diet, 2020, 33: 624-643. doi:10.1111/jhn.12791. |
[32] | Lowe NM, Medina MW, Stammers AL, et al. The relationship between zinc intake and serum/plasma zinc concentration in adults: a systematic review and dose-response meta-analysis by the EURRECA Network[J]. Br J Nutr, 2012, 108: 1962-1971. doi:10.1017/S0007114512004382. |
[33] | Andrew D, Gail R, Morag B, et al. Recommended reference intervals for copper and zinc in serum using the US National Health and Nutrition Examination surveys(NHANES) data[J]. Clin Chim Acta, 2023, 546: 117397. doi:10.1016/j.cca.2023.117397. |
[34] | Cao JW, Duan SY, Zhang HX, et al. Zinc deficiency promoted fibrosis via ROS and TIMP/MMPs in the myocardium of mice[J]. Biol Trace Elem Res, 2020, 196: 145-152. doi:10.1007/s12011-019-01902-4. |
[35] | Hennigar SR, Kelley AM, Anderson BJ, et al. Sensitivity and reliability of zinc transporter and metallothionein gene expression in peripheral blood mononuclear cells as indicators of zinc status: responses to ex vivo zinc exposure and habitual zinc intake in humans[J]. Br J Nutr, 2021, 125: 361-368. |
[36] | Hennigar SR, Kelley AM, McClung JP. Metallothionein and zinc transporter expression in circulating human blood cells as biomarkers of zinc status: a systematic review[J]. Adv Nutr, 2016, 7: 735-746. |
[37] | Knez M, Pantovic A, Tako E, et al. FADS1 and FADS2 as biomarkers of Zn status - a systematic review and meta-analysis[J]. Crit Rev Food Sci Nutr, 2022: 1-19. doi:10.1080/10408398.2022.2103790. |
[38] | Knez M, Boy E. Existing knowledge on Zn status biomarkers(1963-2021) with a particular focus on FADS1 and FADS2 diagnostic performance and recommendations for further research[J]. Front Nutr, 2022, 9: 1057156. doi:10.3389/fnut.2022.1057156. |
[39] | Monteiro JP, Fuzo CA, Ued FV, et al. Dietary patterns related to zinc and polyunsaturated fatty acids intake are associated with serum linoleic/dihomo-γ-linolenic ratio in NHANES males and females[J]. Sci Rep, 2021, 11: 12215. doi:10.1038/s41598-021-91611-7. |
[40] | Cheng J, Bar H, Tako E. Zinc status index(ZSI) for quantification of zinc physiological status[J]. Nutrients, 2021, 13: 3399. doi:10.3390/nu13103399. |
[41] | Rohmawati L, Keumala Sari D, Sitepu M, et al. A randomized, placebo-controlled trial of zinc supplementation during pregnancy for the prevention of stunting: analysis of maternal serum zinc, cord blood osteocalcin and neonatal birth length[J]. Med Glas, 2021, 18: 415-420. doi:10.17392/1267-21. |
[42] | Li X, Zhao J. The influence of zinc supplementation on metabolic status in gestational diabetes: a meta-analysis of randomized controlled studies[J]. Matern-Fetal Neonatal Med, 2021, 34: 2140-2145. |
[43] | Carducci B, Keats EC, Bhutta ZA. Zinc supplementation for improving pregnancy and infant outcome[J]. Cochrane Database Syst Rev, 2021, 3: CD000230. doi:10.1002/14651858.CD000230.pub6. |
[1] | WANG Rui, QI Mingming, YANG Weitao, HUANG Jian, XIAO Jinyan, LI Yichun, WANG Yonghong, LIU Yanping. Effect of comprehensive nutrition management on blood glucose and pregnancy outcome of individuals with gestational diabetes mellitus [J]. Basic & Clinical Medicine, 2024, 44(4): 434-439. |
[2] | ZHANG Wei, YU Yixiang, WANG Lin, WEN Ming. Impact of SARS-CoV-2 vaccination on pregnancy outcome [J]. Basic & Clinical Medicine, 2023, 43(5): 794-797. |
[3] | WANG Zhan-yong, XU Jing, LIANG Yan, YUE Yu-hong. Serum screening for Down's syndrome in the second trimester of pregnancy is associated with adverse pregnancy outcomes [J]. Basic & Clinical Medicine, 2022, 42(6): 955-959. |
[4] | LIAN Ting, ZHANG Rui-jun, XIONG Xiao-lan, ZHANG Xiao-ya, YU Tao, ZHANG Shi-zhong. Role of mitochondrial permeability transition pore in myocardial ischemia-reperfusion injury in rat models with zinc deficiency [J]. Basic & Clinical Medicine, 2022, 42(3): 389-394. |
[5] | ZHAO Shan-ke, FU Yao, CHU Da-peng, FU Lei, HAN Shuo, BAI Xue-yan, LI Yuan, ZHOU Wen-hui. Gonadotropin releasing hormone antagonist protocol brings about more available embryos than agonist long protocol [J]. Basic & Clinical Medicine, 2022, 42(3): 479-483. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备07012236号
Website Copyright © Basic & Clinical Medicine