[1] Liu E, Kopani K. Rapidly progressive cataract formation associated with non-small-cell lung cancer therapy[J]. Cataract Refract Surg, 2016, 42: 1838-1840. [2] Solebo AL, Hammond CJ, Rahi JS. Improving outcomes in congenital cataract[J]. Nature, 2018, 556: E1-E2. [3] 张潇, 戴荣平, 张美芬. 手术模拟器在白内障手术训练中的应用[J]. 基础医学与临床, 2018, 38: 1661-1664. [4] Wang KJ, Wang JX, Wang JD, et al. Congenital coralliform cataract is the predominant consequence of a recurrent mutation in the CRYGD gene[J]. Orphanet J Rare Dis, 2023, 18: 200. doi:10.1186/s13023-023-02816-0. [5] Ajay Pande, Kalyan S. Ghosh, Priya R. Banerjee, et al.Increase in surface hydrophobicity of the cataract-associated P23T mutant of human γD-crystallin is responsible for its dramatically lower, retrograde solubility[J]. Biochemistry, 2010, 49: 6122-6129. [6] Cai SP, Lu L, Wang XZ, et al. A mutated CRYGD associated with congenital coralliform cataracts in two Chinese pedigrees[J]. Int J Ophthalmol, 2021, 14: 800-804. [7] Shiels A. Through the cat-map gateway: a brief history of cataract genetics[J]. Genes (Basel), 2024, 15: 785. doi:10.3390/genes15060785 [8] Zhai Y, Li J, Yu W, et al. Targeted exome sequencing of congenital cataracts related genes: broadening the mutation spectrum and genotype-phenotype correlations in 27 Chinese Han families[J]. Sci Rep, 2017, 7: 1219. doi:10.1038/s41598-017-01182-9. [9] Yang G, Chen Z, Zhang W, et al. Novel mutations in CRYGD are associated with congenital cataracts in Chinese families[J]. Sci Rep, 2016, 6: 18912. doi:10.1038/srep18912. [10] Ghisaidoobe AB,Chung SJ. Intrinsic tryptophan fluores-cence in the detection and analysis of proteins: a focus on Förster resonance energy transfer techniques[J]. Int J Mol Sci, 2014, 15: 22518-22538. [11] Zhang W, Liu M, Yu L, et al. Perturbation effect of single polar group substitution on the self-association of amphiphilic peptide helices[J]. J Colloid Interface Sci, 2022, 610: 1005-1014. |