[1] |
Wishart DS, Cheng LL, Copie V, et al. NMR and metabolomics-a roadmap for the future[J]. Metabolites, 2022, 12: 678.doi: 10.3390/metabo12080678.
|
[2] |
Sundekilde UK, Yde CC, Honore AH, et al. An integrated multi-omics analysis defines key pathway alterations in a diet-induced obesity mouse model[J]. Metabolites, 2020, 10: 80. doi: 10.3390/metabo10030080.
|
[3] |
Bykowski EA, Petersson JN, Dukelow S, et al. Urinary metabolomic signatures as indicators of injury severity following traumatic brain injury: a pilot study[J]. IBRO Neurosci Rep, 2021, 11: 200-206.
|
[4] |
Panyard DJ, Kim KM, Darst BF, et al. Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations[J]. Commun Biol, 2021, 4: 63. doi: 10.1038/s42003-020-01583-z.
|
[5] |
Thomas I, Dickens AM, Posti JP, et al. Serum metabolome associated with severity of acute traumatic brain injury[J]. Nat Commun, 2022, 13: 2545. doi:10.1038/s41467-022-30227-5.
|
[6] |
Creech M, Carvalho L, McCoy H, et al. Mass spectrometry-based approaches for clinical biomarker discovery in traumatic brain injury[J]. Curr Treat Options Neurol, 2022, 24: 605-618.
|
[7] |
Khellaf A, Garcia NM, Tajsic T, et al. Focally administered succinate improves cerebral metabolism in traumatic brain injury patients with mitochondrial dysfunction[J]. J Cereb Blood Flow Metab, 2022, 42: 39-55.
|
[8] |
Laserna AKC, Lai Y, Fang G, et al. Metabolic profiling of a porcine combat trauma-Injury model using NMR and multi-mode LC-MS metabolomics-a prelimi-nary study[J]. Metabolites, 2020, 10:373. doi: 10.3390/metabo10090373.
|
[9] |
Reisz JA, Wither MJ, Moore EE, et al. All animals are equal but some animals are more equal than others: Plasma lactate and succinate in hemorrhagic shock-a comparison in rodents, swine, nonhuman primates, and injured patients[J]. J Trauma Acute Care Surg, 2018, 84: 537-541.
|
[10] |
LaCroix IS, Cohen M, Moore EE, et al. Omics markers of red blood cell transfusion in trauma[J]. Int J Mol Sci, 2022, 23:13815. doi: 10.3390/ijms232213815.
|
[11] |
Huh Y, Ko Y, Hwang K, et al. Admission lactate and base deficit in predicting outcomes of pediatric trauma[J]. Shock, 2021, 55: 495-500.
|
[12] |
Li M, Li G, Yu B, et al. Activation of hypoxia-inducible factor-1alpha via succinate dehydrogenase pathway during acute lung injury induced by trauma/hemorrhagic shock[J]. Shock, 2020, 53: 208-216.
|
[13] |
Taghavi S, Abdullah S, Toraih E, et al. Dimethyl malonate slows succinate accumulation and preserves cardiac function in a swine model of hemorrhagic shock[J]. J Trauma Acute Care Surg, 2022, 93: 13-20.
|
[14] |
Thooft A, Conotte R, Colet JM, et al. Serum metabolomic profiles in critically Ill patients with shock on admission to the Intensive care unit[J]. Metabolites, 2023, 13: 523. doi: 10.3390/metabo13040523.
|
[15] |
Nakazawa H, Wong LP, Shelton L, et al. Farnesysltransferase inhibitor prevents burn injury-induced metabolome changes in muscle[J]. Metabolites, 2022, 12: 800. doi: 10.3390/metabo12090800.
|
[16] |
彭曦. 重症烧伤患者的代谢分期及营养治疗策略[J]. 中华烧伤杂志, 2021, 37: 805-810.
|
[17] |
Hendrickson C, Linden K, Kreyer S, et al.(1)H-NMR metabolomics identifies significant changes in metabolism over time in a porcine model of severe burn and smoke inhalation[J]. Metabolites, 2019, 9: 142. doi: 10.3390/metabo9070142.
|
[18] |
Zhao Y, Liu J, Ding Z, et al. ATP-induced hypothermia improves burn injury and relieves burn pain in mice[J]. J Therm Biol, 2023, 114: 103563. doi: 10.1016/j.jtherbio.2023.103563.
|
[19] |
Chen Z, Turxun N, Ning F. Meta-analysis of the diagno-stic value of procalcitonin in adult burn sepsis[J]. Adv Clin Exp Med, 2021, 30: 455-463.
|
[20] |
Elmassry MM, Mudaliar NS, Colmer-Hamood JA, et al. New markers for sepsis caused by pseudomonas aeruginosa during burn infection[J]. Metabolomics, 2020, 16: 40. doi: 10.1007/s11306-020-01658-2.
|
[21] |
董新文, 姚三巧, 吴卫东, 等. 瓦斯爆炸致大鼠复合伤的血清代谢组学变化研究[J]. 中华劳动卫生职业病杂志, 2021, 11: 808-814.
|
[22] |
Dong X, Yao S, Wu W, et al. Gas explosion-induced acute blast lung injury assessment and biomarker identification by a LC-MS-based serum metabolomics analysis[J]. Hum Exp Toxicol, 2021, 40: 608-621.
|
[23] |
Qiao J, Guo S, Huang X, et al. Expression of angio-poietin-2 in lung tissue of juvenile SD rats with lipopolysaccharide-induced acute lung injury and the role of ulinasta-tin[J]. Arch Immunol Ther Exp(Warsz), 2023, 71: 23. doi: 10.1007/s00005-023-00688-7.
|
[24] |
谢锋, 柴家科, 胡泉, 等. 烧冲复合伤大鼠心肌损伤及钙蛋白酶的变化规律[J]. 中华医学杂志, 2017, 97: 3652-3657.[25.]Tao W, Concepcion AN, Vianen M, et al. Multiomics and machine learning accurately predict clinical response to adalimumab and etanercept therapy in patients with rheumatoid arthritis[J]. Arthritis Rheumatol, 2021, 73: 212-222.
|