[1] |
Clayton SA, Daley KK, Macdonald L, et al. Inflammation causes remodeling of mitochondrial cytochrome c oxidase mediated by the bifunctional gene C15orf48[J]. Sci Adv, 2021, 7: eabl5182. doi:10.1126/sciadv.abl5182.
|
[2] |
Endou M, Yoshida K, Hirota M, et al. Coxfa4l3, a novel mitochondrial electron transport chain complex 4 subunit protein, switches from Coxfa4 during spermatogenesis[J]. Mitochondrion, 2020, 52: 1-7. doi:10.1016/j.mito.2020.02.003.
|
[3] |
Zhou J, Wang H, Lu A, et al. A novel gene, NMES1, downregulated in human esophageal squamous cell carcinoma[J]. Int J Cancer, 2002, 101: 311-316. doi:10.1002/ijc.10600.
|
[4] |
Sorouri M, Chang T, Jesudhasan P, et al. Signatures of host-pathogen evolutionary conflict reveal MISTR-A conser-ved mitochondrial stress response network[J]. PLoS Biol, 2020, 18: e3001045. doi:10.1371/journal.pbio.3001045.
|
[5] |
Musicco C, Signorile A, Pesce V, et al. Mitochondria deregulations in cancer offer several potential targets of therapeutic interventions[J]. Int J Mol Sci, 2023, 24. doi:10.3390/ijms241310420.
|
[6] |
Morgan E, Soerjomataram I, Rumgay H, et al. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: new estimates from GLOBOCAN 2020[J]. Gastroenterology, 2022, 163: 649-658.e642. doi:10.1053/j.gastro.2022.05.054.
|
[7] |
Arai M, Imazeki F, Sakai Y, et al. Analysis of the methylation status of genes up-regulated by the demethylating agent, 5-aza-2′-deoxycytidine, in esophageal squamous cell carcinoma[J]. Oncol Rep, 2008, 20: 405-412.
|
[8] |
Maher SG, Gillham CM, Duggan SP, et al. Gene expression analysis of diagnostic biopsies predicts pathological response to neoadjuvant chemoradiotherapy of esophageal cancer[J]. Ann Surg, 2009, 250: 729-737. doi:10.1097/SLA.0b013e3181bce7e1.
|
[9] |
Cao YN, Li QZ, Liu YX, et al. Discovering the key genes and important DNA methylation regions in breast cancer[J]. Hereditas, 2022, 159: 7. doi:10.1186/s41065-022-00220-5.
|
[10] |
Kim DS, Lee WK, Park JY. Hypermethylation of normal mucosa of esophagus-specific 1 is associated with an unfavorable prognosis in patients with non-small cell lung cancer[J]. Oncol Lett, 2018, 16: 2409-2415. doi:10.3892/ol.2018.8915.
|
[11] |
Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: signaling pathways and targeted intervention[J]. Signal Transduct Target Ther, 2021, 6: 263. doi:10.1038/s41392-021-00658-5.
|
[12] |
Zhou Y, Wang S, Wu W, et al. Sustained activation of EGFR-ERK1/2 signaling limits the response to tigecyc-line-induced mitochondrial respiratory deficiency in liver cancer[J]. EBioMedicine, 2023, 87: 104397. doi:10.1016/j.ebiom.2022.104397.
|
[13] |
Feng J, Li J, Wu L, et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2020, 39: 126. doi:10.1186/s13046-020-01629-4.
|
[14] |
Floyd BJ, Wilkerson EM, Veling MT, et al. Mitochon-drial protein interaction mapping identifies regulators of respiratory chain function[J]. Mol Cell, 2016, 63: 621-632. doi:10.1016/j.molcel.2016.06.033.
|
[15] |
Wen S, Peng W, Chen Y, et al. Four differentially expressed genes can predict prognosis and microenvironment immune infiltration in lung cancer: a study based on data from the GEO[J]. BMC Cancer, 2022, 22: 193. doi:10.1186/s12885-022-09296-8.
|
[16] |
穆雪峰,张燕,马于涛.人工智能在宫颈癌和宫颈癌前病变筛查和诊断中的应用[J].现代妇产科进展, 2023, 32: 65-68,72.
|
[17] |
龙嘉,李黎明,许翠,等. HPV16E7靶向小干扰RNA对SiHa细胞增殖凋亡及6种抑癌基因的影响[J].中华皮肤科杂志, 2016, 49: 717-721.
|
[18] |
Li L, Xu C, Long J, et al. E6 and E7 gene silencing results in decreased methylation of tumor suppressor genes and induces phenotype transformation of human cervical carcinoma cell lines[J]. Oncotarget, 2015, 6: 23930-23943. doi:10.18632/oncotarget.4525.
|
[19] |
Li C, Tang Y, Li Q, et al. The prognostic and immune significance of C15orf48 in pan-cancer and its relationship with proliferation and apoptosis of thyroid carcinoma[J]. Front Immunol, 2023, 14: 1131870. doi:10.3389/fimmu.2023.1131870.
|
[20] |
Kwan K, Castro-Sandoval O, Gaiddon C, et al. Inhibition of p53 protein aggregation as a cancer treatment strategy[J]. Curr Opin Chem Biol, 2023, 72: 102230. doi:10.1016/j.cbpa.2022.102230.
|
[21] |
Tong X, Tang R, Xiao M, et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research[J]. J Hematol Oncol, 2022, 15: 174. doi:10.1186/s13045-022-01392-3.
|
[22] |
Spisak S, Kalmar A, Galamb O, et al. Genome-wide screening of genes regulated by DNA methylation in colon cancer development[J]. PLoS One, 2012, 7: e46215. doi:10.1371/journal.pone.0046215.
|
[23] |
Lang ZQ, Wu YQ, Pan XB, et al. The identification of multifocal breast cancer-associated long non-coding RNAs[J]. Eur Rev Med Pharmacol Sci, 2017, 21: 5648-5654. doi:10.26355/eurrev_201712_14008.
|
[24] |
Zheng SS, Wu YF, Zhang BH, et al. A novel myeloid cell marker genes related signature can indicate immune infiltration and predict prognosis of hepatocellular carcinoma: integrated analysis of bulk and single-cell RNA sequencing[J]. Front Mol Biosci, 2023, 10: 1118377. doi:10.3389/fmolb.2023.1118377.
|
[25] |
Tian Y, Liu H, Zhang C, et al. Comprehensive analyses of ferroptosis-related alterations and their prognostic significance in glioblastoma[J]. Front Mol Biosci, 2022, 9: 904098. doi:10.3389/fmolb.2022.904098.
|