基础医学与临床 ›› 2023, Vol. 43 ›› Issue (11): 1707-1712.doi: 10.16352/j.issn.1001-6325.2023.11.1707
杨蛟洋, 舒格格, 李东宝, 周进*
收稿日期:
2022-10-27
修回日期:
2023-04-11
出版日期:
2023-11-05
发布日期:
2023-10-30
通讯作者:
*zhoujinsuda@suda.edu.cn
基金资助:
YANG Jiaoyang, SHU Gege, LI Dongbao, ZHOU Jin*
Received:
2022-10-27
Revised:
2023-04-11
Online:
2023-11-05
Published:
2023-10-30
Contact:
*zhoujinsuda@suda.edu.cn
摘要: 细胞中不同的信号通路交互作用、互相调控形成一个动态的信号转导网络,参与肿瘤的发生发展,而胃癌的转移就是由各种信号通路调节影响的结果。肿瘤转移通常在临床上与较差的患者预后直接相关,因此深入研究影响胃癌转移的信号通路对晚期胃癌患者的治疗可提供帮助。
中图分类号:
杨蛟洋, 舒格格, 李东宝, 周进. 信号通路在胃癌转移中作用的研究进展[J]. 基础医学与临床, 2023, 43(11): 1707-1712.
YANG Jiaoyang, SHU Gege, LI Dongbao, ZHOU Jin. Research progress of signaling pathways in gastric cancer metastasis[J]. Basic & Clinical Medicine, 2023, 43(11): 1707-1712.
[1] | Song C,Zhou C. HOXA10 mediates epithelial-mesenchymal transition to promote gastric cancer metastasis partly via modulation of TGFB2/Smad/METTL3 signaling axis[J]. J Exp Clin Cancer Res, 2021, 401: 62.doi: 10.1186/s13046-021-01859-0. |
[2] | You X, Wu J, Zhao X, et al. Fibroblastic galectin-1-fostered invasion and metastasis are mediated by TGF-β1-induced epithelial-mesenchymal transition in gastric cancer[J]. Aging (Albany NY), 2021, 1314: 18464-18481. |
[3] | Zhang X, Zhang P, Shao M, et al. SALL4 activates TGF-β/SMAD signaling pathway to induce EMT and promote gastric cancer metastasis[J]. Cancer Manag Res, 2018, 10: 4459-4470. |
[4] | Liu J, Dai X, Guo X, et al. Circ-OXCT1 suppresses gastric cancer EMT and metastasis by attenuating TGF-β pathway through the Circ-OXCT1/miR-136/SMAD4 axis[J]. Onco Targets Ther, 2020, 13: 3987-3998. |
[5] | Li B, Xia Y, Lv J, et al. miR-151a-3p-rich small extracellular vesicles derived from gastric cancer accelerate liver metastasis via initiating a hepatic stemness-enhancing niche[J]. Oncogene, 2021, 4043: 6180-6194. |
[6] | Lu J, Bang H, Kim SM, et al. Lymphatic metastasis-related TBL1XR1 enhances stemness and metastasis in gastric cancer stem-like cells by activating ERK1/2-SOX2 signaling[J]. Oncogene, 2021, 405: 922-936. |
[7] | Kim BK, Cheong JH, Im JY, et al. PI3K/AKT/β-catenin signaling regulates vestigial-like 1 which predicts poor prognosis and enhances malignant phenotype in gastric cancer[J]. Cancers (Basel), 2019, 1112.doi: 10.3390/cancers11121923. |
[8] | Du F, Feng W, Chen S, et al. Sex determining region Y-box 12 (SOX12) promotes gastric cancer metastasis by upregulating MMP7 and IGF1[J]. Cancer Lett, 2019, 452: 103-118. |
[9] | Jiang L, Chen Y, Min G, et al. Bcl2-associated athanogene 4 promotes the invasion and metastasis of gastric cancer cells by activating the PI3K/AKT/NF-κB/ZEB1 axis[J]. Cancer Lett, 2021, 520: 409-421. |
[10] | Xu E, Xia X, Jiang C, et al. GPER1 silencing suppres-ses the proliferation, migration, and invasion of gastric cancer cells by inhibiting PI3K/AKT-mediated EMT[J]. Front Cell Dev Biol, 2020, 8: 591239.doi: 10.3389/fcell.2022.841792. |
[11] | 张生军,常琦,刘敏丽. Livin通过Akt信号途径促进胃癌SGC7901细胞的上皮细胞间质转换[J]. 基础医学与临床, 2016, 365: 586-589. |
[12] | Liu W, Gou H, Wang X, et al. TTPAL promotes gastric tumorigenesis by directly targeting NNMT to activate PI3K/AKT signaling[J]. Oncogene, 2021, 4049: 6666-6679. |
[13] | Liang X, Qin C, Yu G, et al. Circular RNA circRAB31 acts as a miR-885-5psponge to suppress gastric cancer progressionvia the PTEN/PI3K/AKT pathway[J]. Mol Ther Oncolytics, 2021, 23: 501-514. |
[14] | Ge Q, Hu Y, He J, et al. Zic1 suppresses gastric cancer metastasis by regulating Wnt/β-catenin signaling and epithelial-mesenchymal transition[J]. Faseb J, 2020, 342: 2161-2172. |
[15] | Tian S, Peng P, Li J, et al. SERPINH1 regulates EMT and gastric cancer metastasis via the Wnt/β-catenin signaling pathway[J]. Aging (Albany NY), 2020, 124: 3574-3593. |
[16] | Chi HC, Tsai CY, Wang CS, et al. DOCK6 promotes chemo-and radioresistance of gastric cancer by modulating WNT/β-catenin signaling and cancer stem cell traits[J]. Oncogene, 2020, 3937: 5933-5949. |
[17] | Peng Y, Xu Y, Zhang X, et al. A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression[J]. Mol Cancer, 2021, 201: 158.doi: 10.1186/s12943-021-01457-w. |
[18] | Yang XZ, Cheng TT, He QJ, et al. LINC01133 as ceRNA inhibits gastric cancer progression by sponging miR-106a-3p to regulate APC expression and the Wnt/β-catenin pathway[J]. Mol Cancer, 2018, 171: 126.doi: 10.1186/s12943-018-0874-1. |
[19] | Gao Z, Long Y, Wu Y, et al. LncRNA LINC02253 activates KRT18/MAPK/ERK pathway by mediating N6-methyladenosine modification of KRT18 mRNA in gastric cancer[J]. Carcinogenesis, 2022, 435: 419-429. |
[20] | Shi Y,Sun H. Down-regulation of lncRNA LINC00152 suppresses gastric cancer cell migration and invasion through inhibition of the ERK/MAPK signaling pathway[J]. Onco Targets Ther, 2020, 13: 2115-2124. |
[21] | Sun YY, Zhang H, Ma RR, et al. Long non-coding RNA AK025387 promotes cell migration and invasion of gastric cancer[J]. Front Oncol, 2020, 10: 633.doi: 10.3389/fonc.2020.00633. |
[22] | Wang X, Liang Q, Zhang L, et al. C8orf76 promotes gastric tumorigenicity and metastasis by directly inducing lncRNA DUSP5P1 and associates with patient outcomes[J]. Clin Cancer Res, 2019, 2510: 3128-3140. |
[23] | Sun B,Zhong FJ. ELTD1 promotes gastric cancer cell proliferation, invasion and epithelial-mesenchymal transition through MAPK/ERK signaling by regulating CSK[J]. Int J Gen Med, 2021, 14: 4897-4911. |
[24] | Zhang C, Zhao S, Tan Y, et al. The SKA3-DUSP2 axis promotes gastric cancer tumorigenesis and epithelial-mesenchymal transition by activating the MAPK/ERK pathway[J]. Front Pharmacol, 2022, 13: 777612.doi: 10.3389/fphar.2022.777612. |
[25] | Doheny D, Manore SG, Wong GL, et al. Hedgehog signaling and truncated GLI1 in cancer[J]. Cells, 2020, 99.doi: 10.3390/cells9092114. |
[26] | Xu QH, Xiao Y, Li XQ, et al. Resveratrol counteracts hypoxia-induced gastric cancer invasion and EMT through Hedgehog pathway suppression[J]. Anticancer Agents Med Chem, 2020, 209: 1105-1114. |
[27] | Wu L, Wang S, Tang B, et al. Human telomerase reverse transcriptase (hTERT) synergistic with Sp1 upregulate Gli1 expression and increase gastric cancer invasion and metastasis[J]. J Mol Histol, 2021, 526: 1165-1175. |
[28] | Sun DP, Tian YF, Lin CC, et al. A novel mechanism driving poor-prognostic gastric cancer: overexpression of the transcription factor Krüppel-like factor 16 promotes growth and metastasis of gastric cancer through regulating the Notch pathway[J]. Am J Cancer Res, 2021, 116: 2717-2735. |
[29] | Huang B, Jin G, Qu C, et al. Elevated expression of NOTCH1 associates with lymph node metastasis of gastric cancer and knock-down of NOTCH1 attenuates tumor cell progression[J]. Med Sci Monit, 2019, 25: 9939-9948. |
[30] | Liu Z, Li J, Ding Y, et al. USP49 mediates tumor progression and poor prognosis through a YAP1-dependent feedback loop in gastric cancer[J]. Oncogene, 2022, 4118: 2555-2570. |
[31] | Liu H, Liu N, Zhao Y, et al. Oncogenic USP22 supports gastric cancer growth and metastasis by activating c-Myc/NAMPT/SIRT1-dependent FOXO1 and YAP signaling[J]. Aging (Albany NY), 2019, 1121: 9643-9660. |
[32] | Gao Y, Li J, Xi H, et al. Stearoyl-CoA-desaturase-1 regulates gastric cancer stem-like properties and promotes tumour metastasis via Hippo/YAP pathway[J]. Br J Cancer, 2020, 12212: 1837-1847. |
[33] | Zhou W, Xian Q, Wang Q, et al. m6A methyltransferase 3 promotes the proliferation and migration of gastric cancer cells through the m6A modification of YAP1[J]. J Oncol, 2021, 2021: 8875424.doi: 10.1155/2021/8875424. |
[34] | Yao Y, Liu Z, Huang S, et al. The E3 ubiquitin ligase, FBXW5, promotes the migration and invasion of gastric cancer through the dysregulation of the Hippo pathway[J]. Cell Death Discov, 2022, 81: 79.doi: 10.1038/s41420-022-00868-y. |
[35] | Yang Y, Zhang Q, Liang J, et al. STAM2 knockdown inhibits proliferation, migration, and invasion by affecting the JAK2/STAT3 signaling pathway in gastric cancer[J]. Acta Biochim Biophys Sin (Shanghai), 2021, 536: 697-706. |
[36] | Wei KL, Chou JL, Chen YC, et al. Epigenetic silencing of STAT3-targeted miR-193a, by constitutive activation of JAK/STAT signaling, leads to tumor progression through overexpression of YWHAZ in gastric cancer[J]. Front Oncol, 2021, 11: 575667.doi: 10.3389/fonc.2021.575667. |
[1] | 肖艳红, 姜明东, 林叶远, 冉灿, 梁博. 灯盏花乙素抑制人前列腺癌细胞系PC-3的增殖和迁移[J]. 基础医学与临床, 2024, 44(9): 1229-1235. |
[2] | 蒋苏, 吕新翔, 崔艳红, 吕李婷, 李东霞. 吴茱萸碱对特应性皮炎模型大鼠的治疗作用[J]. 基础医学与临床, 2024, 44(9): 1256-1262. |
[3] | 刘保清, 黄容, 卢艳, 李凯, 张宁, 刘长征, 宋伟. 胃癌类器官在基础研究与临床应用中的进展[J]. 基础医学与临床, 2024, 44(9): 1219-1222. |
[4] | 侯楠, 刘源, 高俊, 王晶, 袁萌. 全血NPM1、MCP-1和肠道菌群与胃癌进展及预后相关[J]. 基础医学与临床, 2024, 44(8): 1137-1142. |
[5] | 金庆, 丁佑铭. FOXC1在消化系统癌发生发展中作用的研究进展[J]. 基础医学与临床, 2024, 44(7): 1049-1053. |
[6] | 张伟, 张振, 刘冬, 江后洲, 梁伟. IMRT联合不同化疗方案在早期食管鳞癌患者中不良反应及疗效的比较[J]. 基础医学与临床, 2024, 44(7): 1018-1022. |
[7] | 周玥, 童安莉. 嗜铬细胞瘤/副神经节瘤免疫微环境[J]. 基础医学与临床, 2024, 44(6): 742-747. |
[8] | 高寅洁, 童安莉. 醛固酮产生腺瘤中细胞死亡和增殖机制[J]. 基础医学与临床, 2024, 44(6): 758-762. |
[9] | 李天翊, 张文倩, 陈映含, 周玥, 崔云英, 王宇, 童安莉. 嗜铬细胞瘤/副神经节瘤患者血NSE水平与临床特征的关系[J]. 基础医学与临床, 2024, 44(4): 533-538. |
[10] | 徐璐, 张冬雨, 王瑞锋. 茯苓酸调节PI3K/AKT/NF-κB信号通路对大鼠幽门螺旋杆菌相关性胃炎的治疗作用[J]. 基础医学与临床, 2024, 44(4): 489-495. |
[11] | 王子豪, 夏小超, 李舜. 跨膜蛋白质在恶性肿瘤中作用的研究进展[J]. 基础医学与临床, 2024, 44(3): 398-402. |
[12] | 韩惠晶, 吴红, 葛银, 乔娟. 右美托咪定减轻呼吸机相关性肺损伤模型大鼠肺组织损伤[J]. 基础医学与临床, 2024, 44(3): 339-345. |
[13] | 陈雪, 罗添, 魏超君. 溶血磷脂酰胆碱酰基转移酶1在肿瘤中作用的研究进展[J]. 基础医学与临床, 2024, 44(2): 256-259. |
[14] | 陈卫卫, 廖煌, 史振鸿, 罗颖. FHL2通过NF-κB信号通路调节THP-1巨噬细胞泡沫化[J]. 基础医学与临床, 2024, 44(2): 204-209. |
[15] | 李炜康, 李东宝, 任嘉裕, 孙小童, 段开鹏, 周进. Ghrelin在胃癌中的作用[J]. 基础医学与临床, 2024, 44(10): 1460-1464. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 256
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 163
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备07012236号
网站版权 © 《基础医学与临床》编辑部