[1] |
吕远, 王晓娜, 梁寒. 原发性胃淋巴瘤200例临床分析[J]. 中华胃肠外科杂志, 2012, 15: 157-160.
|
[2] |
Carboni F, Diodoro MG, Valle M. Synchronous primary diffuse large B cell lymphoma and adenocarcinoma of the stomach: a clinical dilemma[J]. Indian J Surg Oncol, 2020, 11: 223-225.
|
[3] |
Meguro M, Someya T, Ohmura T, et al. Collision cancer of primary squamous cell carcinoma and adenocarcinoma in the stomach after treatment for a non-Hodgkin′s lymphoma of diffuse large B cell type:a case report[J]. Nihon Shokakibyo Gakkai Zasshi, 2020, 117: 334-344.
|
[4] |
Fukunaga H, Asama H, Kaneda H, et al. Collision tumor with diffuse large B cell lymphoma and gastric cancer[J]. Jpn J Clin Oncol, 2016, 46: 968-969.
|
[5] |
Kilaru S, Panda SS, Das H, et al. Primary gastric Hodgkin′s lymphoma: a rare coincidence[J]. Cancer Treat Res Commun, 2020, 24: 100194.doi:10.1016/j.ctarc.2020.100194.
|
[6] |
Zhang L, Zhang P, Wen J, et al. Primary gastric natural killer/T-cell lymphoma with diffuse CD30 expression and without CD56 expression: a case report[J]. Oncol Lett, 2016, 11: 969-972.
|
[7] |
Saber MM. Diagnostic performance of PD-L1 versus PD-1 expression in circulating CD20 cells in diffuse Large B-cell lymphoma[J]. Antibodies (Basel), 2022, 11.doi: 10.3390/antib11010015.
|
[8] |
Chen Y, Li M, Cao J, et al. CTLA-4 promotes lymphoma progression through tumor stem cell enrichment and immunosuppression[J]. Open Life Sci, 2021, 16: 909-919.
|
[9] |
American association for cancer research.LAG3-PD-1 Combo impresses in melanoma[J]. Cancer Discov, 2021, 11: 1605-1606.
|
[10] |
Jiang X, Zhang H, Ni J, et al. Identifying tumor antigens and immune subtypes of gastrointestinal MALT lymphoma for immunotherapy development[J]. Front Oncol, 2022, 12: 1060496.doi: 10.3389/fonc.2022.1060496.
|
[11] |
Nagasaki J, Togashi Y, Sugawara T, et al. The critical role of CD4+ T cells in PD-1 blockade against MHC-Ⅱ-expressing tumors such as classic Hodgkin lymphoma[J]. Blood Adv, 2020, 4: 4069-4082.
|
[12] |
Ma J, Pang X, Li J, et al. The immune checkpoint expression in the tumor immune microenvironment of DLBCL: clinicopathologic features and prognosis[J]. Front Oncol, 2022, 12: 1069378.doi: 10.3389/fonc.2022.1069378.
|
[13] |
Morrissey MA, Williamson AP, Steinbach AM, et al. Chimeric antigen receptors that trigger phagocytosis[J]. Elife, 2018, 7.doi: 10.7554/eLife.36688.
|
[14] |
Dovedi SJ, Elder MJ, Yang C, et al. Design and efficacy of a monovalent bispecific PD-1/CTLA4 antibody that enhances CTLA4 blockade on PD-1(+) activated T cells[J]. Cancer Discov, 2021, 11: 1100-1117.
|
[15] |
Palmeri M, Mehnert J, Silk AW, et al. Real-world application of tumor mutational burden-high (TMB-high) and microsatellite instability (MSI) confirms their utility as immunotherapy biomarkers[J]. ESMO Open, 2022, 7: 100336. doi: 10.1016/j.esmoop.2021.100336.
|
[16] |
Shi Y, Su H, Song Y, et al. Circulating tumor DNA predicts response in Chinese patients with relapsed or refractory classical hodgkin lymphoma treated with sintilimab[J]. EBioMedicine, 2020, 54: 102731.doi: 10.1016/j.ebiom.2020.102731.
|
[17] |
Schalper KA, Carleton M, Zhou M, et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors[J]. Nat Med, 2020, 26: 688-692.
|
[18] |
Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study[J]. Lancet, 2020, 396: 839-852.
|
[19] |
Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma[J]. N Engl J Med, 2019, 380: 45-56.
|
[20] |
Hamadani M, Radford J, Carlo-Stella C, et al. Final results of a phase 1 study of loncastuximab tesirine in relapsed/refractory B-cell non-Hodgkin lymphoma[J]. Blood, 2021, 137: 2634-2645.
|
[21] |
Albinger N, Pfeifer R, Nitsche M, et al. Primary CD33-targeting CAR-NK cells for the treatment of acute myeloid leukemia[J]. Blood Cancer J, 2022, 12: 61.doi: 10.1038/s41408-022-00660-2.
|
[22] |
Soldierer M, Bister A, Haist C, et al. Genetic engineering and enrichment of human NK cells for CAR-enhanced immunotherapy of hematological malignancies[J]. Front Immunol, 2022, 13: 847008. doi: 10.3389/fimmu.2022.847008.
|
[23] |
Mukhopadhyay M. Macrophages enter CAR immunotherapy[J]. Nat Methods, 2020, 17: 561.doi: 10.1038/s41592-020-0862-4.
|
[24] |
Klichinsky M, Ruella M, Shestova O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy[J]. Nat Biotechnol, 2020, 38: 947-953.
|
[25] |
Zhang W, Liu L, Su H, et al. Chimeric antigen receptor macrophage therapy for breast tumours mediated by targeting the tumour extracellular matrix[J]. Br J Cancer, 2019, 121: 837-845.
|
[26] |
Kang M, Lee SH, Kwon M, et al. Nanocomplex-mediated in vivo programming to chimeric antigen receptor-M1 macrophages for cancer therapy[J]. Adv Mater, 2021, 33: e2103258.doi: 10.1002/adma.202103258.
|