[1] |
Zhang M, Zhu X, Wu J, et al. Prevalence of hyperuricemia among chinese adults: findings from two nationally representative cross-sectional surveys in 2015-16 and 2018-19[J]. Front Immunol, 2022, 12: 791983. doi:10.3389/fimmu.2021.791983.
|
[2] |
Topless RKG, Major TJ, Florez JC, et al. The compara-tive effect of exposure to various risk factors on the risk of hyperuricaemia: Diet has a weak causal effect[J]. Arthritis Res Ther, 2021, 23: 1-12.
|
[3] |
Chang YS, Lin CY, Liu TY, et al. Polygenic risk score trend and new variants on chromosome 1 are associated with male gout in genome-wide association study[J]. Arthritis Res Ther, 2022, 24: 1-11.
|
[4] |
Homolya L. Medically important alterations in transport function and trafficking of ABCG2[J]. Int J Mol Sci, 2021, 22: 2786. doi:10.3390/ijms22062786.
|
[5] |
Kimura T, Takahashi M, Yan K, et al. Expression of SLC2A9 isoforms in the kidney and their localization in polarized epithelial cells[J]. PLoS One, 2014, 9: e84996. doi: 10.1371/journal.pone.0084996.
|
[6] |
Chen IC, Chen YJ, Chen YM, et al. Interaction of alcohol consumption and ABCG2 rs2231142 variant contributes to hyperuricemia in a taiwanese population[J]. J Pers Med, 2021, 11: 1158. doi: 10.3390/jpm11111158.
|
[7] |
Bartos Z, Homolya L. Identification of specific trafficking defects of naturally occurring variants of the human ABCG2 transporter[J]. Front Cell Dev Biol, 2021, 9: 615729. doi: 10.3389/fcell.2021.615729.
|
[8] |
Hoque KM, Dixon EE, Lewis RM, et al. The ABCG2 Q141K hyperuricemia and gout associated variant illuminates the physiology of human urate excretion[J]. Nat Commun, 2020, 11: 2767. doi: 10.1038/s41467-020-16525-w.
|
[9] |
Chen CJ, Tseng CC, Yen JH, et al. ABCG2 contributes to the development of gout and hyperuricemia in a genome-wide association study[J]. Sci Rep, 2018, 8: 3137. doi: 10.1038/s41598-018-21425-7.
|
[10] |
Wrigley R, Phipps-Green AJ, Topless RK, et al. Pleiotropic effect of the ABCG2 gene in gout: involvement in serum urate levels and progression from hyperuricemia to gout[J]. Arthritis Res Ther, 2020, 22: 1-10.
|
[11] |
Hosoyamada M. Hypothetical mechanism of exercise-induced acute kidney injury associated with renal hypouricemia[J]. Biomedicines, 2021, 9: 1847. doi: 10.3390/biomedicines9121847.
|
[12] |
DeBosch BJ, Kluth O, Fujiwara H, et al. Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9[J]. Nat Commun, 2014, 5: 4642. doi: 10.1038/ncomms5642.
|
[13] |
Luscher BP, Schoeberlein A, Surbek DV, et al. Hyperuricemia during pregnancy leads to a preeclampsia-like phenotype in mice[J]. Cells, 2022, 11: 3703. doi: 10.3390/cells11223703.
|
[14] |
Lüscher BP, Albrecht C, Stieger B, et al. Glucose transporter 9 (GLUT9) plays an important role in the placental uric acid transport system[J]. Cells, 2022, 11: 633. doi: 10.3390/cells11040633.
|
[15] |
Nie Q, Liu M, Zhang Z, et al. The effects of hyperuricemia on endothelial cells are mediated via GLUT9 and the JAK2/STAT3 pathway[J]. Mol Biol Rep, 2021, 48: 8023-8032.
|
[16] |
Takei R, Cadzow M, Markie D, et al. Trans-ancestral dissection of urate-and gout-associated major loci SLC2A9 and ABCG2 reveals primate-specific regulatory effects[J]. J Hum Genet, 2021, 66: 161-169.
|
[17] |
Rivera-Paredez B, Macías-Kauffer L, Fernandez-Lopez JC, et al. Influence of genetic and non-genetic risk factors for serum uric acid levels and hyperuricemia in mexicans[J]. Nutrients, 2019, 11: 1336. doi: 10.3390/nu11061336.
|
[18] |
Lin CY, Chang YS, Liu TY, et al. Genetic contributions to female gout and hyperuricemia using genome-wide association study and polygenic risk score analyses[J]. Rheumatology (Oxford), 2023, 62: 638-646.
|
[19] |
Sun M, Sun W, Zhao X, et al. A machine learning-assisted model for renal urate underexcretion with genetic and clinical variables among Chinese men with gout[J]. Arthritis Res Ther, 2022, 24: 1-9.
|
[20] |
李婷婷, 李爽境, 田甜, 等. 生活方式指数与基因交互作用对凉山地区居民高尿酸血症影响[J]. 中华疾病控制杂志, 2021, 25: 37-42.
|
[21] |
Tin A, Schlosser P, Matias-Garcia PR, et al. Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus[J]. Nat Commun, 2021, 12: 7173. doi: 10.1038/s41467-021-27198-4.
|
[22] |
Gao Q, Cheng X, Merriman TR, et al. Trends in the manifestations of 9754 gout patients in a Chinese clinical center: a 10-year observational study[J]. Joint Bone Spine, 2021, 88: 105078. doi: 10.1016/j.jbspin.2020.09.010.
|
[23] |
Pálinkás M, Szabó E, Kulin A, et al. Genetic polymorphisms and decreased protein expression of ABCG2 urate transporters are associated with susceptibility to gout, disease severity and renal-overload hyperuricemia[J]. Clin Exp Med, 2022. doi: 10.1007/s10238-022-00848-7.
|
[24] |
Zaidi F, Narang RK, Phipps-Green A, et al. Systematic genetic analysis of early-onset gout: ABCG2 is the only associated locus[J]. Rheumatology (Oxford), 2020, 59: 2544-2549.
|
[25] |
Stiburkova B, Pavelcova K, Pavlikova M, et al. The impact of dysfunctional variants of ABCG2 on hyperuricemia and gout in pediatric-onset patients[J]. Arthritis Res Ther, 2019, 21: 1-10.
|
[26] |
Toyoda Y, Pavelcová K, Bohatá J, et al. Identification of two dysfunctional variants in the ABCG2 urate transporter associated with pediatric-onset of familial hyperuricemia and early-onset gout[J]. Int J Mol Sci, 2021, 22: 1935. doi: 10.3390/ijms22041935.
|