[1]Xiao T, Li D, Shi X, et al. PAMAM dendrimer-based nanodevices for nuclear medicine applications[J]. Macromol Biosci, 2020, 20: 1900282 [2]Hawker CJ, Frechet JMJ. Preparation of polymers with controlled molecular architecture-a new convergent approach to dendritic macromolecules[J]. J Am Chem Soc, 1990, 112: 7638-7647. [3]Mignani S, Rodrigues J, Tomas H, et al. Dendrimers in combination with natural products and analogues as anti-cancer agents[J]. Chem Soc Rev, 2018, 47: 514-532. [4]Liu J, Xiong Z, Zhang J, et al. Zwitterionic gadolinium(Ⅲ)-complexed dendrimer-entrapped gold nanoparticles for enhanced computed tomography/magnetic resonance imaging of lung cancer metastasis[J]. ACS Appl Mater Interfaces, 2019, 11: 15212-15221. [5]Zhao L, Wen S, Zhu M, et al. 99mTc labeled multifunctional polyethylenimine-entrapped gold nanoparticles for dual mode SPECT and CT imaging[J]. Artif Cells Nanomed Biotechnol, 2018,46:488-498. [6]Zhu J, Zheng L, Wen S, et al. Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles[J]. Biomaterials, 2014, 35: 7635-7646. [7]Wang Y, Guo R, Cao X, et al. Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine) dendrimers for targeted cancer therapy[J]. Biomaterials, 2011, 32: 3322-3329. [8]Kong L, Alves CS, Hou W, et al. RGD peptide-modified dendrimer-entrapped gold nanoparticles enable highly efficient and specific gene delivery to stem cells[J]. ACS Appl Mater Interfaces, 2015, 7: 4833-4843. [9]Shan Y, Luo T, Peng C, et al. Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors[J]. Biomaterials, 2012, 33: 3025-3035. [10]Zhu J, Shi X. Dendrimer-based nanodevices for targeted drug delivery applications[J]. J Mater Chem B, 2013, 1: 4199-4211. [11]Kong L, Xing L, Zhou B, et al. Dendrimer-modified MoS2 nanoflakes as a platform for combinational gene silencing and photothermal therapy of tumors[J]. ACS Appl Mater Interfaces, 2017, 9: 15995-16005. [12]Kala S, Mak ASC, Liu X, et al. Combination of dendrimer-nanovector-mediated small interfering RNA delivery to target Akt with the clinical anticancer drug paclitaxel for effective and potent anticancer activity in treating ovarian cancer[J]. J Med Chem, 2014, 57: 2634-2642. [13]Zhao L, Zhu J, Cheng Y, et al. Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide I-131 for single photon emission computed tomography imaging and radiotherapy of gliomas[J]. ACS Appl Mater Interfaces, 2015, 7: 19798-19808. [14]Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications[J]. Drug Discov Today, 2010, 15: 171-185. [15]Zhu J, Wang G, Alves CS, et al. Multifunctional dendrimer-entrapped gold nanoparticles conjugated with doxorubicin for pH-responsive drug delivery and targeted computed tomography imaging[J]. Langmuir, 2018, 34: 12428-12435. [16]Liu H, Wang H, Yang W, et al. Disulfide cross-linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost[J]. J Am Chem Soc, 2012, 134: 17680-17687. [17]Haensler J, Szoka FC. Polyamidomine cascade polymers mediate efficient transfection of cells in culture[J]. Bioconjugate Chem, 1993, 4: 372-379. [18]Kukowska-Latallo JF, Bielinska AU, Johnson J, et al. Efficient transfer of genetic material into mammalian cells using starburst polyamidoamine dendrimers[J]. Proc Natl Acad Sci U S A, 1996, 93: 4897-4902. [19]Cheng Y, Li Y, Wu Q, et al. Generation-dependent encapsulation/electrostatic attachment of phenobarbital molecules by poly(amidoamine) dendrimers: Evidence from 2D-NOESY investigations[J]. Eur J Med Chem, 2009, 44: 2219-2223. [20]Hong S, Leroueil PR, Janus EK, et al. Interaction of polycationic polymers with supported lipid bilayers and cells: Nanoscale hole formation and enhanced membrane permeability[J]. Bioconjugate Chem, 2006, 17: 728-734. [21]Hong S, Rattan R, Majoros IJ, et al. The role of ganglioside GM(1) in cellular internalization mechanisms of poly(amidoamine) dendrimers[J]. Bioconjugate Chem, 2009, 20: 1503-1513. [22]Malik N, Wiwattanapatapee R, Klopsch R, et al. Dendrimers: Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribu-tion of I-125-labelled polyamidoamine dendrimers in vivo[J]. J Controlled Release, 2000, 68: 299-302. [23]Song C, Shen M, Rodrigues J, et al. Superstructured poly(amidoamine) dendrimer-based nanoconstructs as plat-forms for cancer nanomedicine: A concise review[J]. Coord Chem Rev, 2020, 421: 213463. [24]Uppuluri S, Swanson DR, Piehler LT, et al. Core-shell tecto(dendrimers): I. Synthesis and characterization of saturated shell models[J]. Adv Mater, 2000, 12: 796-800. [25]Chen F, Kong L, Wang L, et al. Construction of core-shell tecto dendrimers based on supramolecular host-guest assembly for enhanced gene delivery[J]. J Mater Chem B, 2017, 5: 8459-8466. [26]Song C, Gao Y, Chen J, et al. Physicochemical aspects of zwitterionic core-shell tecto dendrimers characterized by a thorough NMR investigation[J]. Colloids Surf A, 2021, 618: 126466. [27]Choi YS, Mecke A, Orr BG, et al. DNA-directed synthesis of generation 7 and 5 PAMAM dendrimer nanoclusters[J]. Nano Lett, 2004, 4: 391-397. [28]Choi Y, Baker JR. Targeting cancer cells with DNA-assembled dendrimers-A mix and match strategy for cancer[J]. Cell Cycle, 2005, 4: 669-671. [29]Choi Y, Thomas T, Kotlyar A, et al. Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting[J]. Chem Biol, 2005, 12: 35-43. [30]Cheng Z, Thorek DLJ, Tsourkas A. Gadolinium-conjug-ated dendrimer nanoclusters as a tumor-targeted T1 magnetic resonance imaging contrast agent[J]. Angew Chem Int Ed, 2010, 49: 346-350. [31]Huang CH, Nwe K, Al Zaki A, et al. Biodegradable polydisulfide dendrimer nanoclusters as MRI contrast agents[J]. ACS Nano, 2012, 6: 9416-9424. [32]Zhang D, Hamilton PD, Kao JLF, et al. Formation of nanogel aggregates by an amphiphilic cholesteryl-poly(amidoamine) dendrimer in aqueous media[J]. J Polym Sci Part A Polym Chem, 2007, 45: 2569-2575. [33]Goncalves M, Maciel D, Capelo D, et al. Dendrimer-assisted formation of fluorescent nanogels for drug delivery and intracellular imaging[J]. Biomacromolecules, 2014, 15: 492-499. [34]Li HJ, Du JZ, Du XJ, et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and thera-peutic efficacy[J]. Proc Natl Acad Sci U S A, 2016, 113: 4164-4169. [35]Li HJ, Du JZ, Liu J, et al. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration[J]. ACS Nano, 2016, 10: 6753-6761. [36]Tomalia DA, Brothers HM, Piehler LT, et al. Partial shell-filled core-shell tecto(dendrimers): A strategy to surface differentiated nano-clefts and cusps[J]. Proc Natl Acad Sci U S A, 2002, 99: 5081-5087. [37]Tomalia DA. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry[J]. Prog Polym Sci, 2005, 30: 294-324. [38]Li J, Swanson DR, Qin D, et al. Characterizations of core-shell tecto-(dendrimer) molecules by tapping mode atomic force microscopy[J]. Langmuir, 1999, 15: 7347-7350. [39]Schilrreff P, Mundina-Weilenmann C, Lilia Romero E, et al. Selective cytotoxicity of PAMAM G5 core-PAMAM G2.5 shell tecto-dendrimers on melanoma cells[J]. Int J Nanomed, 2012, 7: 4121-4133. [40]Studzian M, Działak P, Pułaski Ł, et al. Synthesis, internalization and visualization of N-(4-carbomethoxy) pyrrolidone terminated PAMAM [G5:G3-TREN]tecto(dendrimers) in mammalian cells[J]. Molecules, 2020, 25: 4406. [41]Schmidt BVKJ, Barner-Kowollik C. Dynamic macromolecular material design-The versatility of cyclodextrin-based host-guest chemistry[J]. Angew Chem Int Ed, 2017, 56: 8350-8369. [42]Rekharsky MV, Inoue Y. Complexation thermodynamics of cyclodextrins[J]. Chem Rev, 1998, 98: 1875-1918. [43]Ma X, Zhao Y. Biomedical applications of supramolecular systems based on host-guest interactions[J]. Chem Rev, 2015, 115: 7794-7839. [44]Song C, Ouyang Z, Guo H, et al. Core-shell tecto dendrimers enable enhanced tumor mr imaging through an amplified EPR effect[J]. Biomacromolecules, 2021, 22: 2181-2188. [45]Wang J, Li D, Fan Y, et al. Core-shell tecto dendrimers formed via host-guest supramolecular assembly as pH-responsive intelligent carriers for enhanced anticancer drug delivery[J]. Nanoscale, 2019, 11: 22343-22350. [46]Volz P, Schilrreff P, Brodwolf R, et al. Pitfalls in using fluorescence tagging of nanomaterials: tecto-dendrimers in skin tissue as investigated by Cluster-FLIM[J]. Ann N Y Acad Sci, 2017, 1405: 202-214. [47]Murta V, Schilrreff P, Rosciszewski G, et al. G5G2.5 core-shell tecto-dendrimer specifically targets reactive glia in brain ischemia[J]. J Neurochem, 2018, 144: 748-760. [48]Schilrreff P, Cervini G, Romero E, et al. Enhanced antimelanoma activity of methotrexate and zoledronic acid within polymeric sandwiches[J]. Colloids Surf B, 2014, 122: 19-29. [49]Wang D, Chen L, Gao Y, et al. Impact of molecular rigidity on the gene delivery efficiency of core-shell tecto dendrimers[J]. J Mater Chem B, 2021, 9: 6149-6154. [50]Song C, Xiao Y, Ouyang Z, et al. Efficient co-delivery of microRNA 21 inhibitor and doxorubicin to cancer cells using core-shell tecto dendrimers formed via supramolecular host-guest assembly[J]. J Mater Chem B, 2020, 8: 2768-2774. [51]Qiao Z, Shi X. Dendrimer-based molecular imaging contrast agents[J]. Prog Polym Sci, 2015, 44: 1-27. [52]Zhu J, Xiong Z, Shen M, et al. Encapsulation of doxorubicin within multifunctional gadolinium-loaded dendrimer nanocomplexes for targeted theranostics of cancer cells[J]. RSC Adv, 2015, 5: 30286-30296. [53]Xiong Z, Wang Y, Zhu J, et al. Gd-Chelated poly(propylene imine) dendrimers with densely organized maltose shells for enhanced MR imaging applications[J]. Biomater Sci, 2016, 4: 1622-1629. [54]Liu R, Guo H, Ouyang Z, et al. Multifunctional core-shell tecto dendrimers incorporated with gold nanoparticles for targeted dual mode CT/MR imaging of tumors[J]. ACS Appl Bio Mater, 2021, 4: 1803-1812. |