基础医学与临床 ›› 2022, Vol. 42 ›› Issue (1): 2-14.doi: 10.16352/j.issn.1001-6325.2022.01.007
• 特邀专题:纳米技术与药物递送和再生医学 • 上一篇 下一篇
曹意, 蒋晨*
收稿日期:
2021-11-02
修回日期:
2021-12-01
出版日期:
2022-01-05
发布日期:
2022-01-05
通讯作者:
* jiangchen@shmu.edu.cn
CAO Yi, JIANG Chen*
Received:
2021-11-02
Revised:
2021-12-01
Online:
2022-01-05
Published:
2022-01-05
Contact:
* jiangchen@shmu.edu.cn
摘要: 血脑屏障(blood-brain barrier, BBB)是中枢神经系统内的一种特殊结构,其优良的屏障特性能够保护大脑免于血液循环中有害大分子及病原体的侵害。然而,这一屏障同时也限制了药物递送的效果,并成为治疗神经退行性疾病、脑胶质瘤等脑部疾病的新药开发过程中最严峻的挑战之一。近年来,纳米技术的突破使得各类纳米颗粒(nanoparticles,NPs)逐渐得到了广泛的运用,在靶向递药领域被用做药物载体,经各种途径辅助药物实现BBB的跨越。本文主要通过阐述 BBB 的复杂成分和特殊特性,以理解跨越BBB的难点及可能途径;同时还介绍了目前用于药物递送系统的NPs的3种主要类型:聚合物型(polymeric-based)、仿生型(biomimetic-based)及无机型(inorganic-based)NPs;在靶向递药策略方面,本文主要介绍了吸附介导(adsorptive-mediated)、载体介导(carrier-mediated)及受体介导(receptor-mediated)的胞吞作用,并在文末对脑靶向纳米递药系统的未来发展进行了展望。
中图分类号:
曹意, 蒋晨. 脑靶向纳米药物递释系统研究进展[J]. 基础医学与临床, 2022, 42(1): 2-14.
CAO Yi, JIANG Chen. Brain-targeted nanoparticle drug delivery systems: research advances[J]. Basic & Clinical Medicine, 2022, 42(1): 2-14.
[1]Kreuter J. Nanoparticulate systems for brain delivery of drugs[J]. Adv Drug Deliv Rev, 2001, 47: 65-81. [2]Loureiro JA, Gomes B, Fricker G, et al. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer's disease treatment[J]. Colloids Surf B: Biointerfaces, 2016, 145: 8-13. [3]Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles[J]. J Control Release, 2012, 161:264-273. [4]Peluffo H, Unzueta U, Negro-Demontel ML, et al. BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS[J]. Biotechnol Adv, 2015, 33: 277-287. [5]Koffie RM, Farrar CT, Saidi LJ, et al. Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging[J]. Proc Natl Acad Sci, 2011, 108: 18837-18842. [6]Mahajan DS, Roy I, Xu G, et al. Enhancing the delivery of anti retroviral drug “Saquinavir” across the blood brain barrier using nanoparticles[J]. Curr HIV Res, 2010, 8:396-404. [7]Nance E, Timbie K, Miller GW, et al. Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood-brain barrier using MRI-guided focused ultrasound[J]. J Control Release, 2014, 189:123-132. [8]Zhang TT, Li W, Meng G, et al. Strategies for transport-ing nanoparticles across the blood-brain barrier[J]. Biomater Sci, 2016, 4:219-229. [9]Goldsmith M, Abramovitz L, Peer D. Precision nanomedicine in neurodegenerative diseases[J]. ACS Nano, 2014, 8:1958-1965. [10]Barbu E, Molnàr É, Tsibouklis J, et al. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood-brain barrier[J]. Expert Opin Drug Deliv, 2009, 6:553-565. [11]Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier[J]. Adv Drug Deliv Rev, 2012, 64:640-665. [12]Saraiva C, Praça C, Ferreira R, et al. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases[J]. J Control Release, 2016, 235:34-47. [13]Shen Y, Cao B, Snyder NR, et al. ROS responsive resveratrol delivery from LDLR peptide conjugated PLA-coated mesoporous silica nanoparticles across the blood-brain barrier[J]. J Nanobiotechnol, 2018, 16:1-17. [14]Zhou J, Patel TR, Sirianni RW, et al. Highly penetra-tive, drug-loaded nanocarriers improve treatment of glioblastoma[J]. Proc Natl Acad Sci, 2013, 110:11751-11756. [15]Bhowmik A, Chakravarti S, Ghosh A, et al. Anti-SSTR2 peptide based targeted delivery of potent PLGA encapsulated 3, 3'-diindolylmethane nanoparticles through blood brain barrier prevents glioma progression[J]. Oncotarget, 2017, 8:65339. [16]Hu Q, Gao X, Gu G, et al. Glioma therapy using tumor homing and penetrating peptide-functionalized PEG-PLA nanoparticles loaded with paclitaxel[J]. Biomaterials, 2013, 34:5640-5650. [17]Nance EA, Woodworth GF, Sailor KA, et al. A dense poly (ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue[J]. Sci Transl Med, 2012, 4:149ra119. doi: 10.1126/scitranslmed.3003594. [18]Gao X, Yue Q, Liu Z, et al. Guiding brain-tumor surgery via blood-brain-barrier-permeable gold nanoprobes with acid-triggered MRI/SERRS signals[J]. Adv Mater, 2017, 29:1603917. [19]Liu M, Fréchet JM. Designing dendrimers for drug delivery[J]. Pharm Sci Technol Today, 1999, 2:393-401. [20]Zhang F, Magruder JT, Lin YA, et al. Generation-6 hydroxyl PAMAM dendrimers improve CNS penetration from intravenous administration in a large animal brain injury model[J]. J Control Release, 2017, 249:173-182. [21]Lu Q, Cai X, Zhang X, et al. Synthetic polymer nanoparticles functionalized with different ligands for receptor-mediated transcytosis across the blood-brain barrier[J]. ACS Appl Bio Mater, 2018, 1:1687-1694. [22]Chen Z, Zhao P, Luo Z, et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy[J]. ACS Nano, 2016, 10:10049-10057. [23]Kaur S, Manhas P, Swami A, et al. Bioengineered PLGA-chitosan nanoparticles for brain targeted intranasal delivery of antiepileptic TRH analogues[J]. Chem Eng J, 2018, 346:630-639. [24]Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J]. Nat Biotechnol, 2015, 33:941-951. [25]Cox A, Andreozzi P, Dal Magro R, et al. Evolution of nanoparticle protein corona across the blood-brain barrier[J]. ACS Nano, 2018, 12:7292-7300. [26]Velasco-Aguirre C, Morales F, Gallardo-Toledo E, et al. Peptides and proteins used to enhance gold nanoparticle delivery to the brain: preclinical approaches[J]. Int J Nanomedicine, 2015, 10:4919-4936. [27]Jahanshahi M, Babaei Z. Protein nanoparticle: a unique system as drug delivery vehicles[J]. Afr J Biotechnol, 2008, 7:4926-4934. [28]Huang J, Yuan Y, Shao Y, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications[J]. Nat Rev Mater, 2017, 2:1-19. [29]Anand P, O'Neil A, Lin E, et al. Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers[J]. Sci Rep, 2015, 5:1-10. [30]Fan K, Jia X, Zhou M, et al. Ferritin nanocarrier traverses the blood brain barrier and kills glioma[J]. ACS Nano, 2018, 12:4105-4115. [31]Yan C, Hu X, Guan P, et al. Highly biocompatible graphene quantum dots: green synthesis, toxicity comparison and fluorescence imaging[J]. J Mater Sci, 2020, 55:1198-1215. [32]He X, Nie H, Wang K, et al. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles[J]. Anal Chem, 2008, 80:9597-9603. [33]Watermann A, Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer[J]. Nanomaterials, 2017, 7:189.doi:10.3390/nano7070189. [34]Song Y, Du D, Li L, et al. In vitro study of receptor-mediated silica nanoparticles delivery across blood-brain barrier[J]. ACS Appl Mater Interfaces, 2017, 9:20410-20416. [35]Song Y, Cai X, Du D, et al. Comparison of blood-brain barrier models for in vitro biological analysis: one-cell type vs three-cell typ[J]. ACS Appl Bio Mater, 2019, 2:1050-1055. [36]Ding S, Li Z, Cheng Y, et al. Enhancing adsorption capacity while maintaining specific recognition performance of mesoporous silica: a novel imprinting strategy with amphiphilic ionic liquid as surfactant[J]. Nanotechnology, 2018, 29:375604. doi: 10.1088/1361-6528/aace10. [37]Kuang J, Song W, Yin J, et al. iRGD modified chemo-immunotherapeutic nanoparticles for enhanced immunotherapy against glioblastoma[J]. Adv Funct Mater, 2018, 28:1800025. [38]Yin T, Xie W, Sun J, et al. Penetratin peptide-functionalized gold nanostars: enhanced BBB permeability and NIR photothermal treatment of Alzheimer's disease using ultralow irradiance[J]. ACS Appl Mater Interfaces, 2016, 8:19291-19302. [39]Sung JH, Ji JH, Park JD, et al. Subchronic inhalation toxicity of silver nanoparticles[J]. Toxicol Sci, 2009, 108:452-461. [40]Monsalve Y, Tosi G, Ruozi B, et al. PEG-g-chitosan nanoparticles functionalized with the monoclonal antibody OX26 for brain drug targeting[J]. Nanomedicine, 2015, 10:1735-1750. [41]Muniswamy VJ, Raval N, Gondaliya P, et al. ‘Dendrimer-Cationized-Albumin'encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin[J]. Int J Pharm, 2019, 555:77-99. [42]Agarwal A, Majumder S, Agrawal H, et al. Cationized albumin conjugated solid lipid nanoparticles as vectors for brain delivery of an anti-cancer drug[J]. Curr Nanosci, 2011, 7:71-80. [43]Park TE, Singh B, Li H, et al. Enhanced BBB permeability of osmotically active poly (mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer's disease[J]. Biomaterials, 2015, 38:61-71. [44]Kamalinia G, Khodagholi F, Shaerzadeh F, et al. Catio-nic albumin-conjugated chelating agent as a novel brain drug delivery system in neurodegeneration[J]. Chem Biol Drug Des, 2015, 86:1203-1214. [45]Kim JY, Choi WI, Kim YH, et al. Brain-targeted delivery of protein using chitosan-and RVG peptide-conjugated, pluronic-based nano-carrier[J]. Biomaterials, 2013, 34:1170-1178. [46]Dombu CY, Kroubi M, Zibouche R, et al. Characteriza-tion of endocytosis and exocytosis of cationic nanoparticles in airway epithelium cells[J]. Nanotechnology, 2010, 21:355102. [47]Kamalinia G, Khodagholi F, Shaerzadeh F, et al. Catio-nic albumin-conjugated chelating agent as a novel brain drug delivery system in neurodegeneration[J]. Chem Biol Drug Des, 2015, 86:1203-1214. [48]Lu W, Wan J, Zhang Q, et al. Aclarubicin-loaded cationic albumin-conjugated pegylated nanoparticle for glioma chemotherapy in rats[J]. Int J Cancer, 2007, 120:420-431. [49]Agarwal A, Agrawal H, Tiwari S, et al. Cationic ligand appended nanoconstructs: a prospective strategy for brain targeting[J]. Int J Pharm, 2011, 421:189-201. [50]Abhinav A, Saikat M, Himanshu A, et al. Cationized albumin conjugated solid lipid nanoparticles as vectors for brain delivery of an anti-cancer drug[J]. Curr Nanosci, 2011, 7:71-80. [51]Janaszewska A, Ziemba B, Ciepluch K, et al. The biodistribution of maltotriose modified poly(propylene imine) (PPI) dendrimers conjugated with fluorescein—proofs of crossing blood-brain-barrier[J]. New J Chem, 2012, 36:350-353. [52]Park TE, Singh B, Li H, et al. Enhanced BBB permeability of osmotically active poly(mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer's disease[J]. Biomaterials, 2015, 38:61-71. [53]Monsalve Y, Tosi G, Ruozi B, et al. PEG-g-chitosan nanoparticles functionalized with the monoclonal antibody OX26 for brain drug targeting[J]. Nanomedicine (Lond), 2015, 10:1735-1750. [54]Kim JY, Choi WI, Kim YH, et al. Brain-targeted delivery of protein using chitosan-and RVG peptide-conjugated, pluronic-based nano-carrier[J]. Biomaterials, 2013, 34:1170-1178. [55]Kamalinia G, Khodagholi F, Shaerzadeh F, et al. Catio-nic albumin-conjugated chelating agent as a novel brain drug delivery system in neurodegeneration[J]. Chem Biol Drug Des, 2015, 86:1203-1214. [56]Jiang X, Xin H, Ren Q, et al. Nanoparticles of 2-deoxy-D-glucose functionalized poly (ethylene glycol)-co-poly (trimethylene carbonate) for dual-targeted drug delivery in glioma treatment[J]. Biomaterials, 2014, 35:518-529. [57]Du D, Chang N, Sun S, et al. The role of glucose transporters in the distribution of p-aminophenyl-α-d-mannopyranoside modified liposomes within mice brain[J]. J Control Release, 2014, 182:99-110. [58]Hao ZF, Cui YX, Li MH, et al. Liposomes modified with P-aminophenyl-α-d-mannopyranoside: a carrier for target-ing cerebral functional regions in mice[J]. Eur J Pharm Biopharm, 2013, 84:505-516. [59]Singh I, Swami R, Jeengar MK, et al. p-Aminophenyl-α-D-mannopyranoside engineered lipidic nanoparticles for effective delivery of docetaxel to brain[J]. Chem Phys Lipids, 2015, 188:1-9. [60]Zhang CX, Zhao WY, Liu L, et al. A nanostructure of functional targeting epirubicin liposomes dually modified with aminophenyl glucose and cyclic pentapeptide used for brain glioblastoma treatment[J]. Oncotarget, 2015, 6:32681. [61]Lei F, Fan W, Li XK, et al. Design, synthesis and preliminary bio-evaluation of glucose-cholesterol derivatives as ligands for brain targeting liposomes[J]. Chin Chem Lett, 2011, 22:831-834. [62]Qin Y, Fan W, Chen H, et al. In vitro and in vivo investigation of glucose-mediated brain-targeting liposomes[J]. J Drug Target, 2010, 18:536-549. [63]Xie F, Yao N, Qin Y, et al. Investigation of glucose-modified liposomes using polyethylene glycols with different chain lengths as the linkers for brain targeting[J]. Int J Nanomedicine, 2012, 7:163-175. [64]Liu J, He Y, Zhang J, et al. Functionalized nanocarrier combined seizure-specific vector with P-glycoprotein modulation property for antiepileptic drug delivery[J]. Biomaterials, 2016, 74:64-76. [65]Vyas A, Jain A, Hurkat P, et al. Targeting of AIDS related encephalopathy using phenylalanine anchored lipidic nanocarrier[J]. Colloids Surf B: Biointerfaces, 2015, 131:155-161. [66]Geldenhuys W, Mbimba T, Bui T, et al. Brain-targeted delivery of paclitaxel using glutathione-coated nanoparti-cles for brain cancers[J]. J Drug Target, 2011, 19:837-845. [67]Geldenhuys W, Wehrung D, Groshev A, et al. Brain-targeted delivery of doxorubicin using glutathione-coated nanoparticles for brain cancers[J]. Pharm Dev Technol, 2015, 20:497-506. [68]Grover A, Hirani A, Pathak Y, et al. Brain-targeted delivery of docetaxel by glutathione-coated nanoparticles for brain cancer[J]. AAPS PharmSciTech, 2014, 15:1562-1568. [69]Venishetty VK, Samala R, Komuravelli R, et al. β-Hydroxybutyric acid grafted solid lipid nanoparticles: A novel strategy to improve drug delivery to brain[J]. Nanomedicine, 2013, 9:388-397. [70]Devi R, Jain A, Hurkat P, et al. Dual drug delivery using lactic acid conjugated SLN for effective management of neurocysticercosis[J]. Pharm Res, 2015, 32:3137-3148. [71]LaManna JC, Harik SI. Regional comparisons of brain glucose influx[J]. Brain Res, 1985, 326:299-305. [72]Vannucci SJ, Maher F, Simpson IA. Glucose transporter proteins in brain: delivery of glucose to neurons and glia[J]. Glia, 1997, 21:2-21. [73]Ulbrich K, Hekmatara T, Herbert E, et al. Transferrin-and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB)[J]. Eur J Pharm Biopharm, 2009, 71:251-256. [74]Visser CC, Stevanovi S, Voorwinden LH, et al. Targeting liposomes with protein drugs to the blood-brain barrier in vitro[J]. Eur J Pharm Sci, 2005, 25:299-305. [75]Chang J, Jallouli Y, Kroubi M, et al. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier[J]. Int J Pharm, 2009, 379:285-292. [76]Fornaguera C, Dols-Perez A, Calderó G, et al. PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood-brain barrier[J]. J Control Release, 2015, 211:134-143. [77]Qiao R, Jia Q, Hüwel S, et al. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier[J]. ACS Nano, 2012, 6:3304-3310. [78]Re F, Cambianica I, Zona C, et al. Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model[J]. Nanomedicine, 2011, 7:551-559. [79]You Y, Yang L, He L, et al. Tailored mesoporous silica nanosystem with enhanced permeability of the blood-brain barrier to antagonize glioblastoma[J]. J Mater Chem B, 2016, 4:5980-5990. [80]Boado RJ, Zhang Y, Zhang Y, et al. GDNF fusion protein for targeted-drug delivery across the human blood-brain barrier[J]. Biotechnol Bioeng, 2008, 100:387-396. [81]Ulbrich K, Knobloch T, Kreuter J. Targeting the insulin receptor: nanoparticles for drug delivery across the blood-brain barrier (BBB)[J]. J Drug Target, 2011, 19:125-132. [82]Gan CW, Feng SS. Transferrin-conjugated nanoparticles of poly(lactide)-D-alpha-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier[J]. Biomaterials, 2010, 31:7748-7757. [83]Lin T, Zhao P, Jiang Y, et al. Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy[J]. ACS Nano, 2016, 10:9999-10012. [84]Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery[J]. Med Res Rev, 2002, 22:225-250. [85]Simpson IA, Ponnuru P, Klinger ME, et al. A novel model for brain iron uptake: introducing the concept of regulation[J]. J Cereb Blood Flow Metab, 2015, 35:48-57. [86]Zhang Y, Lu C, Zhang J. Lactoferrin and its detection methods: a review[J]. Nutrients, 2021, 13:2492. doi: 10.3390/nu13082492. [87]Pardridge WM, Eisenberg J, Yang J. Human blood-brain barrier insulin receptor[J]. J Neurochem, 1985, 44:1771-1778. [88]Zou H, Wang Z, Feng M. Nanocarriers with tunable surface properties to unblock bottlenecks in systemic drug and gene delivery[J]. J Control Release, 2015, 214:121-133. [89]Shi B, Du X, Chen J, et al. Multifunctional hybrid nanoparticles for traceable drug delivery and intracellular microenvironment-controlled multistage drug-release in neurons[J]. Small, 2017, 13:1603966. [90]Cao Y, Wang B, Wang Y, et al. Dual drug release from core-shell nanoparticles with distinct release profiles[J]. J Pharm Sci, 2014, 103:3205-3216. [91]Angelova A, Angelov B, Drechsler M, et al. Neurotro-phin delivery using nanotechnology[J]. Drug Discov Today, 2013, 18:1263-1271. [92]Lages EB, Fernandes RS, Silva JO, et al. Co-delivery of doxorubicin, docosahexaenoic acid, and alpha-tocopherol succinate by nanostructured lipid carriers has a synergistic effect to enhance antitumor activity and reduce toxicity[J]. Biomed Pharmacother, 2020, 132:110876. [93]Maor I, Asadi S, Korganbayev S, et al. Laser-induced thermal response and controlled release of copper oxide nanoparticles from multifunctional polymeric nanocarriers[J]. Sci Technol Adv Mater, 2021, 22:218-233. [94]Lopez-Salas FE, Nadella R, Maldonado-Berny M, et al. Synthetic Monopartite peptide that enables the nuclear import of genes delivered by the neurotensin-polyplex vector[J]. Mol Pharm, 2020, 17:4572-4588. [95]Kass LE, Nguyen J. Nanocarrier-hydrogel composite delivery systems for precision drug release[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2021:e1756. doi: 10.1002/wnan.1756. |
[1] | 黄清昱, 陈奇英, 孙晟甲, 吴帮卫, 林杉, 阿力木江·买买提江. Lir@BSA-PMF纳米颗粒的制备及其细胞功能验证[J]. 基础医学与临床, 2024, 44(2): 235-241. |
[2] | 张敏, 邢丹丹, 康文越, 林慧. 七氟醚减轻蛛网膜下腔出血大鼠早期脑损伤[J]. 基础医学与临床, 2022, 42(8): 1206-1212. |
[3] | 苏钰雯, 修建波, 许琪. 血脑屏障体外细胞模型的建立与比较[J]. 基础医学与临床, 2022, 42(5): 714-720. |
[4] | 刘健. 基因治疗中的核酸药物及非病毒递送载体的研究进展[J]. 基础医学与临床, 2022, 42(1): 41-50. |
[5] | 郑庆丰 王建军 应敏刚 柳硕岩 韩颖超. 纳米羟基磷灰石可介导转染人肺癌A549细胞[J]. 基础医学与临床, 2009, 29(3): 309-313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备07012236号
网站版权 © 《基础医学与临床》编辑部