[1]Mutsaers SE, Prêle CM, Pengelly S, et al. Mesothelial cells and peritoneal homeostasis[J]. Fertil Steril, 2016, 106: 1018-1024. [2]Zhu M, Zhang N, He S, et al. Exosomal miR-106a derived from gastric cancer promotes peritoneal metastasis via direct regulation of Smad7[J]. Cell Cycle, 2020, 19: 1200-1221. [3]Zhu M, Zhang N, He S, et al. MicroRNA-106a targets TIMP2 to regulate invasion and metastasis of gastric cancer[J]. FEBS Lett, 2014, 588: 600-607. [4]Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367: eaau6977.doi:10.1126/science.aau6977. [5]解修峰, 史志周. 肿瘤及其微环境源性外泌体miRNAs在致癌机制、肿瘤诊断和治疗中的研究进展[J]. 基础医学与临床, 2017, 37: 1326-1330. [6]Lv ZD, Wang HB, Dong Q, et al. Mesothelial cells differentiate into fibroblast-like cells under the scirrhous gastric cancer microenvironment and promote peritoneal carcinomatosis in vitro and in vivo[J]. Mol Cell Biochem, 2013, 377: 177-185. [7]Yan X, Liao H, Cheng M, et al. Smad7 protein interacts with receptor-regulated smads (R-Smads) to inhibit transforming growth factor-beta (TGF-beta)/Smad signaling[J]. J Biol Chem, 2016, 291: 382-392. [8]Xu F, Liu C, Zhou D, et al. TGF-β/SMAD pathway and its regulation in hepatic fibrosis[J]. J histochem cytochem, 2016, 64: 157-167. [9]Rynne-Vidal A, Au-Yeung CL, Jimenez-Heffernan JA, et al. Mesothelial-to-mesenchymal transition as a possible therapeutic target in peritoneal metastasis of ovarian cancer[J]. 2017, 242: 140-151. [10]Katsuno Y, Qin J, Oses-Prieto J, et al. Arginine methylation of SMAD7 by PRMT1 in TGF-β-induced epithelial-mesenchymal transition and epithelial stem-cell generation[J]. J Biol Chem, 2018, 293: 13059-13072. [11]Avădanei R, Căruntu ID, Amălinei C, et al. High variability in MMP2/TIMP2 and MMP9/TIMP1 expression in secondary liver tumors[J]. Rom J Morphol Embryol, 2013, 54: 479-485. [12]Yáñez-Mó M, Lara-Pezzi E, Selgas R, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells[J]. N Engl J Med, 2003, 348: 403-413. |