基础医学与临床 ›› 2025, Vol. 45 ›› Issue (8): 999-1009.doi: 10.16352/j.issn.1001-6325.2025.08.0999
陈凌云1, 陈文嵩2, 孙勤强2, 訾金2*
收稿日期:2025-03-25
修回日期:2025-06-13
出版日期:2025-08-05
发布日期:2025-07-11
通讯作者:
*zij@genomics.cn
CHEN Lingyun1, CHEN Wensong2, SUN Qinqiang2, ZI Jin2*
Received:2025-03-25
Revised:2025-06-13
Online:2025-08-05
Published:2025-07-11
Contact:
*zij@genomics.cn
摘要: 尿液代谢组学是发现非侵入性生物标志物的重要途径,它可以检测特定疾病发生过程中或治疗干预前后的代谢物差异,为疾病的早期诊断、预防及个体化治疗提供新的思路。与其他体液样本相比,尿液样本的特点是易于收集、代谢物丰富以及能够及时反映体内生化代谢途径的变化。在尿液代谢组学的研究中需要严格按照标准进行样本的采集和保存。核磁共振(NMR)和质谱(MS)是尿液代谢组学研究的主要分析技术。由于尿液样本中代谢物复杂,需要根据具体的研究目标选择合适的分析技术,或结合多种技术以提高对代谢物分析的全面性和准确性。本文对现有研究报道进行综述,以了解尿液代谢组学研究相关的主要技术进展及其在癌症风险检测中的应用。
中图分类号:
陈凌云, 陈文嵩, 孙勤强, 訾金. 尿液代谢组学研究技术进展及其在癌症诊断中的应用[J]. 基础医学与临床, 2025, 45(8): 999-1009.
CHEN Lingyun, CHEN Wensong, SUN Qinqiang, ZI Jin. Progress in urinary metabolomics research technologies and applications in cancer diagnosis[J]. Basic & Clinical Medicine, 2025, 45(8): 999-1009.
| [1] | Dunn WB, Broadhurst DI, Atherton HJ, et al. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy[J]. Chem Soc Rev, 2011, 40: 387-426. |
| [2] | Roberts LD, Souza AL, Gerszten RE, et al. Targeted metabolomics[J]. Curr Protoc Mol Biol, 2012, 98:2-24. doi:10.1002/0471142727.mb3002s98. |
| [3] | Patti GJ, Yanes O, Siuzdak G. Innovation: Metabolomics: the apogee of the omics trilogy[J]. Nat Rev Mol Cell Biol, 2012, 13: 263-269. |
| [4] | Van QN, Veenstra TD, Issaq HJ. Metabolic profiling for the detection of bladder cancer[J]. Curr Urol Rep, 2011, 12: 34-40. |
| [5] | Schmidt K, Podmore I. Current challenges in volatile organic compounds analysis as potential biomarkers of cancer[J]. J Biomark, 2015, 2015:981458. doi:10.1155/2015/981458. |
| [6] | Miller RC, Brindle E, Holman DJ, et al. Comparison of specific gravity and creatinine for normalizing urinary reproductive hormone concentrations[J]. Clin Chem, 2004, 50: 924-932. |
| [7] | Wei J, Gao Y. Early disease biomarkers can be found using animal models urine proteomics[J]. Expert Rev Proteomics, 2021, 18: 363-378. |
| [8] | Wishart DS, Jewison T, Guo AC, et al. HMDB 3.0—The Human Metabolome Database in 2013[J]. Nucleic Acids Res, 2012, 41: D801-D807. |
| [9] | Dettmer K, Aronov PA, Hammock BD. Mass spectrome-try-based metabolomics[J]. Mass Spectrom Rev, 2007, 26: 51-78. |
| [10] | Kumar BS, Chung BC, Kwon OS, et al. Discovery of common urinary biomarkers for hepatotoxicity induced by carbon tetrachloride, acetaminophen and methotrexate by mass spectrometry-based metabolomics[J]. J Appl Toxicol, 2012, 32: 505-520. |
| [11] | Trivedi DK, Iles RK. HILIC-MS-based shotgun metabolomic profiling of maternal urine at 9-23 weeks of gestation-establishing the baseline changes in the maternal metabolome[J]. Biomed Chromatogr, 2015, 29: 240-245. |
| [12] | Johnson CH, Gonzalez FJ. Challenges and opportunities of metabolomics[J]. J Cell Physiol, 2012, 227: 2975-2981. |
| [13] | Slupsky CM, Rankin KN, Wagner J, et al. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles[J]. Anal Chem, 2007, 79: 6995-7004. |
| [14] | Bondia-Pons I, Barri T, Hanhineva K, et al. UPLC-QTOF/MS metabolic profiling unveils urinary changes in humans after a whole grain rye versus refined wheat bread intervention[J]. Mol Nutr Food Res, 2013, 57: 412-422. |
| [15] | Scalbert A, Brennan L, Fiehn O, et al. Mass-spectrome-try-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research[J]. Metabolomics, 2009, 5: 435-458. |
| [16] | Holm A, Aabenhus R. Urine sampling techniques in symptomatic primary-care patients: a diagnostic accuracy review[J]. BMC Fam Pract, 2016, 17:72. doi:10.1186/s12875-016-0465-4. |
| [17] | Kuhara T. Diagnosis of inborn errors of metabolism using filter paper urine, urease treatment, isotope dilution and gas chromatography-mass spectrometry[J]. J Chromatogr B Biomed Sci Appl, 2001, 758: 3-25. |
| [18] | Ryan D, Robards K, Prenzler PD, et al. Recent and potential developments in the analysis of urine: A review[J]. Anal Chim Acta, 2011, 684: 17-29. |
| [19] | Lenz EM, Bright J, Wilson ID, et al. Metabonomics, dietary influences and cultural differences: A 1H NMR-based study of urine samples obtained from healthy British and Swedish subjects[J]. J Pharm Biomed Anal, 2004, 36: 841-849. |
| [20] | Roux A, Thévenot EA, Seguin F, et al. Impact of collection conditions on the metabolite content of human urine samples as analyzed by liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance spectroscopy[J]. Metabolomics, 2014, 11: 1095-1105. |
| [21] | Laparre J, Kaabia Z, Mooney M, et al. Impact of storage conditions on the urinary metabolomics fingerprint[J]. Anal Chim Acta, 2017, 951:99-107. |
| [22] | Lee SH, An JH, Park HM, et al. Investigation of endogenous metabolic changes in the urine of pseudo germ-free rats using a metabolomic approach[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2012, 887-888:8-18. |
| [23] | Rotter M, Brandmaier S, Prehn C, et al. Stability of targeted metabolite profiles of urine samples under different storage conditions[J]. Metabolomics, 2016, 13: 4. doi:10.1007/s11306-016-1137-z. |
| [24] | Khodadadi M, Pourfarzam M. A review of strategies for untargeted urinary metabolomic analysis using gas chromatography-mass spectrometry[J]. Metabolomics, 2020, 16: 66. doi:10.1007/s11306-020-01687-x. |
| [25] | Dunn WB, Broadhurst D, Ellis DI, et al. A GC-TOF-MS study of the stability of serum and urine metabolomes during the UK Biobank sample collection and preparation protocols[J]. Int J Epidemiol, 2008, 37: i23-i30. doi:10.1093/ije/dym281. |
| [26] | Eisinger SW, Schwartz M, Dam L, et al. Evaluation of the BD vacutainer plus urine C&S preservative tubes compared with nonpreservative urine samples stored at 4 ℃ and room temperature[J]. Am J Clin Pathol, 2013, 140: 306-313. |
| [27] | Stringer KA, Mckay RT, Karnovsky A, et al. Metabolo-mics and its application to acute lung diseases[J]. Front Immunol, 2016, 7:44. doi: 10.3389/fimmu.2016.00044. |
| [28] | Nagana Gowda GA, Raftery D. NMR-based metabolomics[J].Adv Exp Med Biol, 2021, 1280:19-37. |
| [29] | Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine[J]. Nat Rev Drug Discov, 2016, 15: 473-484. |
| [30] | Martias C, Baroukh N, Mavel S, et al. Optimization of sample preparation for metabolomics exploration of urine, feces, blood and saliva in humans using combined NMR and UHPLC-HRMS platforms[J]. Molecules, 2021, 26: 4111. doi:10.3390/molecules26144111. |
| [31] | Bouatra S, Aziat F, Mandal R, et al. The human urine metabolome[J]. PLoS One, 2013, 8: e73076, doi:10.1371/journal.pone.0016957. |
| [32] | Duarte IF, Diaz SO, Gil AM. NMR metabolomics of human blood and urine in disease research[J]. J Pharm Biomed Anal, 2014, 93:17-26. |
| [33] | Brezmes J, Llambrich M, Cumeras R, et al. Urine NMR metabolomics for precision oncology in colorectal cancer[J]. Int J Mol Sci, 2022, 23: 11171. doi: 10.3390/ijms231911171. |
| [34] | Emwas AH, Roy R, McKay RT, et al. NMR Spectros-copy for metabolomics research[J]. Metabolites, 2019, 9: 123. doi: 10.3390/metabo9070123. |
| [35] | Peng Y, Zhang Z, He L, et al. NMR spectroscopy for metabolomics in the living system: recent progress and future challenges[J] Anal Bioanal Chem, 2024, 416: 2319-2334. |
| [36] | Emwas AH, Luchinat C, Turano P, et al. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review[J]. Metabolomics, 2015, 11: 872-894. |
| [37] | Tomasz L, Przemys aw A, Tomasz K, et al. Analysis of VOCs in urine samples directed towards of bladder cancer detection[J] Molecules, 2022, 27: 5023. doi:10.3390/molecules27155023. |
| [38] | Cara O, Bianca A, Laneke L. Optimising a urinary extraction method for non-targeted GC-MS metabolomics[J] Sci Rep, 2023, 13: 17591. doi:10.1038/s41598-023-44690-7. |
| [39] | Chan ECY, Pasikanti KK, Nicholson JK. Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry[J]. Nat Protoc, 2011, 6: 1483-1499. |
| [40] | Moros G, Chatziioannou AC, Gika HG, et al. Investigation of The derivatization conditions for GC-MS metabolomics of biological samples[J]. Bioanalysis, 2016, 9: 53-65. |
| [41] | Kuhara T. Gas chromatographic-mass spectrometric urinary metabolome analysis to study mutations of inborn errors of metabolism[J]. Mass Spectrom Rev, 2005, 24: 814-827. |
| [42] | Cala M, Aldana J, Sánchez J, et al. Urinary metabolite and lipid alterations in Colombian Hispanic women with breast cancer: A pilot study[J]. J Pharm Biomed Anal, 2018, 152:234-241. |
| [43] | Eshima J, Ong S, Davis TJ, et al. Monitoring changes in the healthy female metabolome across the menstrual cycle using GC×GC-TOFMS[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2019, 1121:48-57. |
| [44] | Ming Y, Xiaoyan L, Xiaoyue T, et al. LC-MS based urine untargeted metabolomic analyses to identify and subdivide urothelial cancer[J].Front Oncol, 2023, 13:1160965. doi:10.3389/fonc.2023.1160965. |
| [45] | Rodríguez-Morató J, Pozo ÓJ, Marcos J. Targeting human urinary metabolome by LC-MS/MS: a review[J]. Bioanalysis, 2018, 10: 489-516. |
| [46] | Xie G, Wang L, Chen T, et al. A metabolite array technology for precision medicine[J]. Anal Chem, 2021, 93: 5709-5717. |
| [47] | Wang Y, Sun Y, Wang Y, et al. Urine metabolomics phenotyping and urinary biomarker exploratory in mild cognitive impairment and Alzheimer′s disease[J]. Front Aging Neurosci, 2023, 15:1273807. doi:10.3389/fnagi.2023.1273807. |
| [48] | Zhao S, Dawe M, Guo K, et al. Development of high-performance chemical isotope labeling LC-MS for profiling the carbonyl submetabolome[J]. Anal Chem, 2017, 89: 6758-6765. |
| [49] | Bian X, Li N, Tan B, et al. Polarity-tuning derivatiza-tion-LC-MS approach for probing global carboxyl-containing metabolites in colorectal cancer[J]. Anal Chem, 2018, 90: 11210-11215. |
| [50] | Ruiqi J, Yu J, Pei Z, et al. Twin derivatization strategy for high-coverage quantification of free fatty acids by liquid chromatography-tandem mass spectrometry[J]. Anal Chem, 2017, 89: 12223-12230. |
| [51] | Lu Y, Wang Y, Ong CN, et al. Metabolic signatures and risk of type 2 diabetes in a Chinese population: an untargeted metabolomics study using both LC-MS and GC-MS[J]. Diabetologia, 2016, 59: 2349-2359. |
| [52] | Lima AR, Pinto J, Barros-Silva D, et al. New findings on urinary prostate cancer metabolome through combined GC-MS and 1H NMR analytical platforms[J]. Metabolomics, 2020, 16:70. doi: 10.1007/s11306-020-01691-1 |
| [53] | Chen Y, Shen G, Zhang R, et al. Combination of injection volume calibration by creatinine and MS signals′ normalization to overcome urine variability in LC-MS-based metabolomics studies[J]. Anal Chem, 2013, 85: 7659-7665. |
| [54] | Tang KW, Toh QC, Teo BW. Normalisation of urinary biomarkers to creatinine for clinical practice and research-when and why[J]. Singapore Med J, 2015, 56: 7-10. |
| [55] | Huestis MA, Blount BC, Milan DF, et al. Correlation of creatinine- and specific gravity-normalized free and glucuronidated urine cannabinoid concentrations following smoked, vaporized, and oral cannabis in frequent and occasional cannabis users[J]. Drug Test Anal, 2019, 11: 968-975. |
| [56] | Edmands WM, Ferrari P, Scalbert A. Normalization to specific gravity prior to analysis improves information recovery from high resolution mass spectrometry metabolo-mic profiles of human urine[J]. Anal Chem, 2014, 86: 10925-10931. |
| [57] | WU Y, LI L. Sample normalization methods in quantitative metabolomics[J]. J Chromatogr A, 2016, 1430:80-95. |
| [58] | Chadha V, Garg U, Alon US. Measurement of urinary concentration: a critical appraisal of methodologies[J]. Pediatr Nephrol, 2001, 16: 374-382. |
| [59] | Mizuno H, Ueda K, Kobayashi Y, et al. The great importance of normalization of LC-MS data for highly-accurate non-targeted metabolomics[J]. Biomed Chromatogr, 2016, 31:10. doi:10.1002/bmc.3864. |
| [60] | Mattarucchi E, Baraldi E, Guillou C. Metabolomics applied to urine samples in childhood asthma; differentiation between asthma phenotypes and identification of relevant metabolites[J]. Biomed Chromatogr, 2011, 26: 89-94. |
| [61] | Sahni S, Pandya AR, Hadden WJ, et al. A unique urinary metabolomic signature for the detection of pancreatic ductal adenocarcinoma[J]. Int J Cancer, 2021, 148: 1508-1518. |
| [62] | Liang JH, Lin Y, Ouyang T, et al. Nuclear magnetic resonance-based metabolomics and metabolic pathway net-works from patient-matched esophageal carcinoma, adjacent noncancerous tissues and urine[J].World J Gastroenterol, 2019, 25: 3218-3230. |
| [63] | Wang R, Kang H, Zhang X, et al. Urinary metabolomics for discovering metabolic biomarkers of bladder cancer by UPLC-MS[J]. BMC cancer, 2022, 22: 214. doi: 10.1186/s12885-022-09318-5.. |
| [64] | Zhu C, Huang F, Li Y, et al. Distinct urinary metabolic biomarkers of human colorectal cancer[J]. Dis Markers, 2022, 2022:1758113. doi:10.1155/2022/1758113. |
| [65] | Nizioł J, Ossoliński K, Płaza-Altamer A, et al. Untarge-ted urinary metabolomics for bladder cancer biomarker screening with ultrahigh-resolution mass spectrometry[J]. Sci Rep, 2023, 13: 9802. doi:10.1038/s41598-023-36874-y. |
| [66] | Xu X, Zeng C, Qing B, et al. Development of a urine-based metabolomics approach for multi-cancer screening and tumor origin prediction[J]. Front Immunol, 2024, 15:1449103. doi: 10.3389/fimmu.2024.1449103. |
| [67] | Eroglu EC, Kucukgoz Gulec U, Vardar MA, et al. GC-MS based metabolite fingerprinting of serous ovarian carcinoma and benign ovarian tumor[J]. Eur J Mass Spectrom (Chichester), 2022, 28: 12-24. |
| [68] | Alsaleh M, Leftley Z, O′Connor T, et al. Mapping of population disparities in the cholangiocarcinoma urinary metabolome[J]. Sci Rep, 2021, 11: 21286. doi: 10.1038/s41598-021-00530-0. |
| [69] | Tyagi H, Daulton E, Bannaga AS, et al. Non-invasive detection and staging of colorectal cancer using a portable electronic nose[J]. Sensors (Basel), 2021, 21:5440. doi: 10.3390/s21165440. |
| [70] | Jacyna J, Wawrzyniak R, Balayssac S, et al. Urinary metabolomic signature of muscle-invasive bladder cancer: A multiplatform approach[J]. Talanta, 2019, 202:572-579. |
| [1] | 王爱唯, 刘佳琦, 刘晓燕, 孙海丹, 郭正光, 何成彦, 孙伟. 非靶向代谢组学筛选结直肠癌患者血清标志物[J]. 基础医学与临床, 2025, 45(6): 793-799. |
| [2] | 刘东, 李庆妍, 王自全, 王丙武, 王保庆. 胃癌患者外周血miR-34a甲基化的检测及临床意义[J]. 基础医学与临床, 2023, 43(10): 1572-1576. |
| [3] | 高寅洁, 谢绍伟, 刘世颖, 陆艺, 张芳, 邱玲, 童安莉. LC-MS/MS检测类固醇激素谱在诊断原发性醛固酮增多症中的应用[J]. 基础医学与临床, 2022, 42(12): 1835-1840. |
| [4] | 王慧萍, 文进, 崔云英, 马晓森, 任卫东, 童安莉. 一例儿童醛固酮和皮质醇共分泌肾上腺瘤的临床表现及全外显子测序分析[J]. 基础医学与临床, 2021, 41(3): 352-357. |
| [5] | 叶阿里, 邹雨桐, 张海燕, 吴洁, 张睿, 张晓峰, 马庆伟. MALDI-TOF-MS和RT-qPCR对于SLCO1B1和ApoE多态性检测的比较[J]. 基础医学与临床, 2020, 40(7): 980-985. |
| [6] | 吕亚囡, 宋东坡, 王伟青, 陈艳萍. 一例新生儿瓜氨酸血症Ⅰ型ASS1基因突变分析[J]. 基础医学与临床, 2020, 40(10): 1403-1406. |
| [7] | 石拓 卢存龙 李龙 朱厚鑫 周岩冰. 液相色谱-质谱研究高尿酸血症大鼠血清代谢组学[J]. 基础医学与临床, 2019, 39(3): 337-342. |
| [8] | 章元 张业. 与PIH1D1相互作用的蛋白分析[J]. 基础医学与临床, 2016, 36(7): 951-955. |
| [9] | 卡米拉.阿不里米提 仉红刚 马可 王琴 张秋菊 修瑞娟. SELDI蛋白质芯片筛选差异蛋白分子的二级鉴定[J]. 基础医学与临床, 2012, 32(3): 278-282. |
| [10] | 周娜 朱静 田杰 张亚兰 邓兵 李娅莎. 组蛋白乙酰化酶调控MSCs经5-azaC诱导后的细胞周期和增殖特性[J]. 基础医学与临床, 2010, 30(7): 689-697. |
| [11] | 郑智国 夏婷 李永哲 高赟 牟瀚舟 许沈华 许洋. WCX纳米磁珠在宫颈鳞癌血清蛋白质组中的应用及其临床意义[J]. 基础医学与临床, 2009, 29(3): 287-291. |
| [12] | 魏晓丽 王悦. 癌蛋白质组学技术及其应用[J]. 基础医学与临床, 2008, 28(10): 1107-1110. |
| [13] | 宋元宗 郝虎 肖昕 王自能. 鸟氨酸氨甲酰基转移酶缺陷症尿液标志物的气相色谱-质谱法分析[J]. 基础医学与临床, 2007, 27(7): 811-814. |
| [14] | 刘建栋 李永哲 李宁 郦卫星 许洋. 血液处理及质谱仪标准化的初步研究(约稿)[J]. 基础医学与临床, 2007, 27(2): 193-197. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

京ICP备07012236号
网站版权 © 《基础医学与临床》编辑部