[1] |
郑刚.心力衰竭患者心源性猝死风险预测和干预的临床研究最新进展[J].中华老年心脑血管病杂志,2020,22:997-1000.
|
[2] |
Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure[J]. Nat Rev Cardiol, 2016,13:368-378. doi: 10.1038/nrcardio.2016.25.
|
[3] |
Park LG, Dracup K, Whooley M A, et al. Sedentary lifestyle associated with mortality in rural patients with heart failure[J]. Eur J Cardiovasc Nurs, 2019,18:318-324. doi: 10.1177/1474515118822967.
|
[4] |
吉史伍呷, 方进博.机器学习在心力衰竭病人预后评估中的应用研究进展[J].护理研究,2023,37:1195-1199.
|
[5] |
Mamun M, Farjana A, Al Mamun M, et al. Heart failure survival prediction using machine learning algorithm: am I safe from heart failure? [C]//2022 IEEE World AI IoT Congress (AIIoT). IEEE, 2022: 194-200.
|
[6] |
Türkmenoğlu BK, Yildiz O. Predicting the survival of heart failure patients in unbalanced data sets [C] //2021 29th Signal Processing and Communications Applications Conference (SIU). IEEE, 2021: 1-4.
|
[7] |
Vedomske MA, Brown DE, Harrison JH. Random forests on ubiquitous data for heart failure 30-day readmissions prediction[C]//2013 12th International conference on machine learning and applications. IEEE, 2013, 2: 415-421.
|
[8] |
Wang Y, Ng K, Byrd R J, et al. Early detection of heart failure with varying prediction windows by structured and unstructured data in electronic health records[C]//2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015: 2530-2533.
|
[9] |
Geweid GGN, Abdallah MA. A new automatic identifica-tion method of heart failure using improved support vector machine based on duality optimization technique[J]. IEEE Access, 2019, 7: 149595-149611.
|
[10] |
Aljaaf AJ, Al-Jumeily D, Hussain AJ, et al. Predicting the likelihood of heart failure with a multi level risk assessment using decision tree[C]//2015 Third Interna-tional Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE). IEEE, 2015: 101-106.
|
[11] |
Saravanan S, Swaminathan K. Hybrid K-means and support vector machine to predict heart failure[C] //2021 2nd International Conference on Smart Electronics and Communication (ICOSEC). IEEE, 2021: 1678-1683.
|
[12] |
郭志恒, 刘青萍, 刘芳, 等.基于机器学习算法的脑卒中疾病早期预测模型研究[J].计算机与数字工程,2021,49:2180-2183+2247.
|
[13] |
Wang B, Bai Y, Yao Z, et al. A multi-task neural network architecture for renal dysfunction prediction in heart failure patients with electronic health records[J]. IEEE Access, 2019, 7: 178392-178400.
|
[14] |
Chicco D, Jurman G. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone[J]. BMC Med Inform Decis Mak, 2020, 20: 1-16.
|
[15] |
Agasthi P, Buras MR, Smith SD, et al. Machine learning helps predict long-term mortality and graft failure in patients undergoing heart transplant[J]. Gen Thorac Cardiovasc Surg, 2020, 68: 1369-1376.
|
[16] |
König S, Pellissier V, Hohenstein S, et al. Machine learning algorithms for claims data-based prediction of in-hospital mortality in patients with heart failure[J]. ESC Heart Fail, 2021, 8: 3026-3036.
|
[17] |
Newaz A, Ahmed N, Haq F S. Survival prediction of heart failure patients using machine learning techniques[J]. Inform Med Unlocked, 2021, 26: 100772. doi: 10.1016/j.imu.2021.100772.
|
[18] |
Yu Z, Yang X, Chen Y, et al. Identify cancer patients at risk for heart failure using electronic health record and genetic data[C]//2022 IEEE 10th International Conference on Healthcare Informatics (ICHI). IEEE, 2022: 138-142.
|
[19] |
Mirsafaei M, Basiri A. Addressing death from heart failure using RACER algorithm[C]//2022 30th International Conference on Electrical Engineering (ICEE). IEEE, 2022: 636-640.
|
[20] |
Kim T, Kim M, Lee HW, et al. One year mortality prediction in heart failure using feature selection and missing value imputation in deep learning[C]//2023 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2023: 145-148.
|
[21] |
娜迪热・艾孜热提艾力, 严伟, 鲁庆波, 等.基于机器学习算法的脑梗死伴颅内动脉狭窄预测模型研究[J].中国神经精神疾病杂志,2022,48:597-601.
|
[22] |
Istolahti T, Nieminen T, Huhtala H, et al. Long-term prognostic significance of the ST level and ST slope in the 12-lead ECG in the general population[J]. J Electrocardiol, 2020, 58: 176-183.
|
[23] |
Inamdar AA, Inamdar AC. Heart failure: diagnosis, management and utilization[J]. J Clin Med, 2016, 5: 62. doi: 10.3390/jcm5070062.
|
[24] |
周燕, 莫卿, 姜华, 等. 年龄对心力衰竭患者临床特征及预后的影响[J/CD]. 中华临床医师杂志(电子版),2019,13:726-730.
|
[25] |
Anderies A, Tchin JARW, Putro PH, et al. Prediction of heart disease UCI dataset using machine learning algorithms[J]. Engineering, MAthematics and Computer Science (EMACS) Journal, 2022, 4: 87-93.
|