[1] |
Mifflin L, Hu Z, Dufort C, et al. A RIPK1-regulated inflammatory microglial state in amyotrophic lateral sclerosis[J]. Proc Natl Acad Sci U S A, 2021, 118: e2025102118. doi: 10.1073/pnas.2025102118.
|
[2] |
Deng Z, Lim J, Wang Q, et al. ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway[J]. Autophagy, 2020, 16: 917-931. doi: 10.1080/15548627.2019.1644076.
|
[3] |
Marmor-Kollet H, Siany A, Kedersha N, et al. Spatiotemporal proteomic analysis of stress granule disassembly using APEX reveals regulation by SUMOylation and links to ALS pathogenesis[J]. Mol Cell, 2020, 80: 876-891 e6. doi: 10.1016/j.molcel.2020.10.032.
|
[4] |
Bharath LP, Agrawal M, McCambridge G, et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation[J]. Cell Metab, 2020, 32: 44-55 e6. doi: 10.1016/j.cmet.2020.04.015.
|
[5] |
Singh T, Jiao Y, Ferrando LM, et al. Neuronal mitochondrial dysfunction in sporadic amyotrophic lateral sclerosis is developmentally regulated[J]. Sci Rep, 2021, 11: 18916. doi: 10.1038/s41598-021-97928-7.
|
[6] |
Hor JH, Santosa MM, Lim VJW, et al. ALS motor neurons exhibit hallmark metabolic defects that are rescued by SIRT3 activation[J]. Cell Death Differ, 2021, 28: 1379-1397. doi: 10.1038/s41418-020-00664-0.
|
[7] |
Sassani M, Alix JJ, McDermott CJ, et al. Magnetic resonance spectroscopy reveals mitochondrial dysfunction in amyotrophic lateral sclerosis[J]. Brain, 2020, 143: 3603-3618. doi: 10.1093/brain/awaa340.
|
[8] |
Cheong A, Archambault D, Degani R, et al. Nuclear-encoded mitochondrial ribosomal proteins are required to initiate gastrulation[J]. Development, 2020, 147: dev188714. doi: 10.1242/dev.188714.
|
[9] |
Wynne ME, Lane AR, Singleton KS, et al. Heterogene-ous expression of nuclear encoded mitochondrial genes distinguishes inhibitory and excitatory neurons[J]. eNeuro, 2021, 8: ENEURO.0232-21.2021. doi: 10.1523/ENEURO.0232-21.2021.
|
[10] |
Altman T, Ionescu A, Ibraheem A, et al. Axonal TDP-43 condensates drive neuromuscular junction disruption through inhibition of local synthesis of nuclear encoded mitochondrial proteins[J]. Nat Commun, 2021, 12: 6914. doi: 10.1038/s41467-021-27221-8.
|
[11] |
Mao F, Robinson JL, Unger T, et al. TMEM106B modifies TDP-43 pathology in human ALS brain and cell-based models of TDP-43 proteinopathy[J]. Acta Neuropathol, 2021, 142: 629-642. doi: 10.1007/s00401-021-02330-2.
|
[12] |
Zuo X, Zhou J, Li Y, et al. TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS[J]. Nat Struct Mol Biol, 2021, 28: 132-142. doi: 10.1038/s41594-020-00537-7.
|
[13] |
DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS[J]. Neuron, 2011, 72: 245-56. doi: 10.1016/j.neuron.2011.09.011.
|
[14] |
Mehta AR, Gregory JM, Dando O, et al. Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis[J]. Acta Neuropathol, 2021, 141: 257-279. doi: 10.1007/s00401-020-02252-5.
|
[15] |
Liu Y, Wang T, Ji YJ, et al. A C9orf72-CARM1 axis regulates lipid metabolism under glucose starvation-induced nutrient stress[J]. Genes Dev, 2018, 32: 1380-1397. doi: 10.1101/gad.315564.118.
|
[16] |
Wang T, Liu H, Itoh K, et al. C9orf72 regulates energy homeostasis by stabilizing mitochondrial complex I assembly[J]. Cell Metab, 2021, 33: 531-546 e9. doi: 10.1016/j.cmet.2021.01.005.
|
[17] |
Nahm M, Lim SM, Kim YE, et al. ANXA11 mutations in ALS cause dysregulation of calcium homeostasis and stress granule dynamics[J]. Sci Transl Med, 2020, 12: eaax3993. doi: 10.1126/scitranslmed.aax3993.
|
[18] |
Dafinca R, Barbagallo P, Farrimond L, et al. Impairment of mitochondrial calcium buffering links mutations in C9ORF72 and TARDBP in iPS-derived motor neurons from patients with ALS/FTD[J]. Stem Cell Reports, 2020, 14: 892-908. doi: 10.1016/j.stemcr.2020.03.023.
|
[19] |
Mccauley ME, O’Rourke JG, Yáñez A, et al. C9orf72 in myeloid cells suppresses STING-induced inflammation[J]. Nature, 2020, 585: 96-101. doi: 10.1038/s41586-020-2625-x.
|
[20] |
Yu CH, Davidson S, Harapas CR, et al. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS[J]. Cell, 2020, 183: 636–649. doi: 10.1016/j.cell.2020.09.020.
|
[21] |
Wang W, Arakawa H, Wang L, et al. Motor-coordinative and cognitive dysfunction caused by mutant TDP-43 could be reversed by inhibiting its mitochondrial localization[J]. Mol Ther, 2017, 25: 127-139. doi: 10.1016/j.ymthe.2016.10.013.
|
[22] |
Tak YJ, Park JH, Rhim H, et al. ALS-related mutant SOD1 aggregates interfere with mitophagy by sequestering the autophagy receptor optineurin[J]. Int J Mol Sci, 2020, 21: 7525. doi: 10.3390/ijms21207525.
|
[23] |
Harding O, Evans CS, Ye J, et al. ALS- and FTD-associated missense mutations in TBK1 differentially disrupt mitophagy[J]. Proc Natl Acad Sci U S A, 2021, 118: e2025053118. doi: 10.1073/pnas.2025053118.
|
[24] |
Maestro I, De La Ballina LR, Porras G, et al. Discovery of mitophagy inhibitors with therapeutic potential in different familial amyotrophic lateral sclerosis mutations[J]. Int J Mol Sci, 2022, 23: 12676. doi: 10.3390/ijms232012676.
|
[25] |
Perera ND, Tomas D, Wanniarachchillage N, et al. Stimulation of mTOR-independent autophagy and mitophagy by rilmenidine exacerbates the phenotype of transgenic TDP-43 mice[J]. Neurobiol Dis, 2021, 154: 105359. doi: 10.1016/j.nbd.2021.105359.
|