[1] Landrum MJ, Lee JM, Benson M, et al. ClinVar: public archive of interpretations of clinically relevant variants[J]. Nucleic Acids Res, 2016,44:D862-D868. [2] Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016,533:420-424. [3] Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage[J]. Nature, 2017,551:464-471. [4] Hu JH, Miller SM, Geurts MH, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018,556:57-63. [5] Koblan LW, Doman JL, Wilson C, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J]. Nat Biotechnol, 2018,36:843-846. [6] Walton RT, Christie KA, Whittaker MN, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020,368:290-296. [7] Dang Y, Jia G, Choi J, et al. Optimizing sgRNA struc-ture to improve CRISPR-Cas9 knockout efficiency[J]. Genome Biol, 2015,16:280.doi:10.1186/s13059-015-0846-3. [8] Komor AC, Badran AH, Liu DR. Editing the genome without double-stranded DNA breaks[J]. ACS Chem Biol, 2018,13:383-388. [9] Gaudelli NM, Lam DK, Rees HA, et al. Directed evolution of adenine base editors with increased activity and therapeutic application[J]. Nat Biotechnol, 2020,38:892-900. [10] Richter MF, Zhao KT, Eton E, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity[J]. Nat Biotechnol, 2020,38:883-891. [11] Tan J, Zhang F, Karcher D, et al. Engineering of high-precision base editors for site-specific single nucleotide replacement[J]. Nat Commun, 2019,10:439.doi:10.1038/s41467-018-08034-8. [12] Huang C, Li G, Wu J, et al. Identification of pathogenic variants in cancer genes using base editing screens with editing efficiency correction[J]. Genome Biol, 2021,22:80.doi:10.1186/s13059-021-02305-2. |