[1] Wang MY, Zhao R, Gao LJ, et al. SARS-CoV2: structure, biology, and structure-based therapeutics development[J].Front Cell Infect Microbiol,2020, 10:587269. doi:10.3389/fcimb.2020.587269. [2] Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection[J]. Front Med,2020,14:185-192. [3] Rojas M, Rodríguez Y, Monsalve DM, et al.Convalescent plasma in Covid-19: possible mechanisms of action[J]. Autoimmun Rev,2020,19:102554. doi: 10.1016/j.autrev.2020.102554. [4] Yan R, Wang R, Ju B, et al. Structural basis for bivalent binding and inhibition of SARS-CoV2 infection by human potent neutralizing antibodies[J]. Cell Res,2021,31:517-525. [5] Piepenbrink MS, Park JG, Oladunni FS, et al. Thera-peutic activity of an inhaled potent SARS-CoV2 neutraliz-ing human monoclonal antibody in hamsters[J]. Cell Rep Med,2021,2:100218. doi: 10.1016/j.xcrm.2021.100218. [6] Shi R, Shan C, Duan X, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV2[J]. Nature, 2020,584:120-124. [7] He X, Hong W, Pan X, et al. SARS-CoV2 Omicron variant: characteristics and prevention[J]. MedComm (2020),2021,16:838-845. [8] Kumar S, Thambiraja TS, Karuppanan K, et al. Omicron and Delta variant of SARS-CoV2: a comparative computational study of spike protein[J]. J Med Virol,2022,94:1641-1649. [9] Focosi D, Maggi F. Neutralising antibody escape of SARS-CoV2 spike protein: risk assessment for antibody-based Covid-19 therapeutics and vaccines[J]. Rev Med Virol,2021:2231.doi: 10.1002/rmv.2231. [10] Nie J, Li Q, Wu J, et al. Quantification of SARS-CoV2 neutralizing antibody by a pseudotyped virus-based assay[J]. Nat Protoc,2020,15:3699-3715. [11] Zhou, Z, Wang X, Fu Y, et al. Neutralizing antibodies for the treatment of COVID-19[J]. Acta Pharm Sin B,2021,21:382-393. |