基础医学与临床 ›› 2020, Vol. 40 ›› Issue (5): 701-706.
焦晓璐, 秦彦文*
收稿日期:
2020-03-15
修回日期:
2020-03-17
出版日期:
2020-05-05
发布日期:
2020-04-30
通讯作者:
*qinyanwen@126.com
基金资助:
JIAO Xiao-lu, QIN Yan-wen*
Received:
2020-03-15
Revised:
2020-03-17
Online:
2020-05-05
Published:
2020-04-30
Contact:
*qinyanwen@126.com
摘要: 血管紧张素转换酶2(ACE2)是SARS病毒(SARS-CoV)、新型冠状病毒(SARS-CoV-2)感染机体的主要受体,也是肾素-血管紧张素-醛固酮系统的主要成员之一。ACE2对多种心血管疾病具有保护作用,SARS-CoV-2可以降低机体ACE2的表达,这可能是新型冠状病毒肺炎(COVID-19)后期产生心血管并发症的原因之一。本文总结了ACE2在多种心血管疾病发病过程中的作用及其机制,希望为新型冠状病毒肺炎(COVID-19)的治疗提供新的思路。
中图分类号:
焦晓璐, 秦彦文. 血管紧张素转换酶2与心血管疾病研究进展[J]. 基础医学与临床, 2020, 40(5): 701-706.
JIAO Xiao-lu, QIN Yan-wen. Progress of angiotensin converting enzyme 2 in cardiovascular diseases[J]. Basic & Clinical Medicine, 2020, 40(5): 701-706.
[1]Alenina N, Bader M. ACE2 in brain physiology and pathophysiology: evidence from transgenic animal models[J]. Neurochem Res, 2018, 44: 1323-1329. [2]Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 10.1038/s41586-020-2012-7. [3]Rice GI, Thomas DA, Grant PJ, et al. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism[J]. Biochem J, 2004, 383: 45-51. [4]Vickers C, Hales P, Kaushik V, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase[J]. J Biol Chem, 2002, 277: 14838-14843. [5]Holmes L Jr, Lim A, Comeaux CR, et al. DNA methylation of candidate genes (ACE Ⅱ, IFN-gamma, AGTR 1, CKG, ADD1, SCNN1B and TLR2) in essential hypertension: a systematic review and quantitative evidence synthesis[J]. Int J Environ Res Pub Health, 2019, 16.doi:10.3390/ijerph16234829. [6]Pan Y, Wang T, Li Y, et al. Association of ACE2 polymorphisms with susceptibility to essential hypertension and dyslipidemia in Xinjiang, China[J]. Lipids Health Dis, 2018, 17: 241.doi:10.1186/s12944-018-0890-6. [7]Fan Z, Wu G, Yue M, et al. Hypertension and hypertensive left ventricular hypertrophy are associated with ACE2 genetic polymorphism[J]. Life Sci, 2019, 225: 39-45. [8]Xu J, Sriramula S, Xia HJ, et al. Clinical relevance and role of neuronal AT receptors in ADAM17-mediated ACE2 shedding in neurogenic hypertension[J]. Circ Res, 2017, 121: 43-55. [9]Povlsen AL, Grimm D, Wehland M, et al. The vasoactive Mas receptor in essential hypertension[J]. J Clin Med, 2020, 9: 267.doi:10.3390/jcm9010267. [10]Srivastava P, Badhwar S, Chandran DS, et al. Imbalance between Angiotensin Ⅱ-Angiotensin (1-7) system is associated with vascular endothelial dysfunction and inflammation in type 2 diabetes with newly diagnosed hypertension[J]. Diabetes Metab Syndr, 2019, 13: 2061-2068. [11]Liao W, Fan H, Davidge ST, et al. Egg white-derived antihypertensive peptide IRW (Ile-Arg-Trp) reduces blood pressure in spontaneously hypertensive rats via the ACE2/Ang (1-7)/Mas receptor axis[J]. Mol Nutr Food Res, 2019, 67:7147-7156. [12]Zhang L, Wang J, Liang JL et al. Propofol prevents human umbilical vein endothelial cell injury from AngⅡ-induced apoptosis by activating the ACE2-(1-7)-Mas axis and eNOS phosphorylation[J]. PLoS One, 2018, 13.doi:10.1371/journal.pone.0199373. [13]Pan X, Shao Y, Wu F, et al. FGF21 prevents angiotensin Ⅱ-induced hypertension and vascular dysfunction by activation of ACE2/angiotensin-(1-7) axis in mice[J]. Cell Metabolism, 2018, 27: 1323-1337. [14]Zhao Y, Ma R, Yu X, et al. AHU377+valsartan (LCZ696) modulates renin-angiotensin system (RAS) in the cardiac of female spontaneously hypertensive rats compared with valsartan[J]. J Cardiovasc Pharmacol Ther, 2019, 24: 450-459. [15]Zhao S, Ghosh A, Lo CS, et al. Nrf2 deficiency upregulates intrarenal angiotensin-converting enzyme-2 and angiotensin 1-7 receptor expression and attenuates hypertension and nephropathy in diabetic mice[J]. Endocrinology, 2018, 159: 836-852. [16]Wang K, Xu Y, Yang WK, et al. Insufficient hypotha-lamic angiotensin-converting enzyme 2 is associated with hypertension in SHR rats[J]. Oncotarget, 2017, 8: 20244-20251. [17]Sriramula S, Xia H, Xu P, et al. Brain-targeted angiotensin-converting enzyme 2 overexpression attenuates neurogenic hypertension by inhibiting cyclooxygenase-mediated inflammation[J]. Hypertension, 2015, 65: 577-586. [18]Mukerjee S, Gao H, Xu J, et al. ACE2 and ADAM17 interaction regulates the activity of presympathetic neurons[J]. Hypertension, 2019,74: 1181-1191. [19]Shoemaker R, Tannock LR, Su W, et al. Adipocyte deficiency of ACE2 increases systolic blood pressures of obese female C57BL/6 mice[J]. Biol Sex Differ, 2019, 10:45-57. [20]Minato T, Nirasawa S, Sato T, et al. B38-CAP is a bacteria-derived ACE2-like enzyme that suppresses hypertension and cardiac dysfunction[J]. Nat Commun, 2020, 11:1058-1070. [21]Li Y, Hu J, Qian H, et al. Novel findings: Expression of angiotensin-converting enzyme and angiotensin-converting enzyme 2 in thoracic aortic dissection and aneurysm[J]. J Renin-Angiotensin-Aldosterone Sys: JRAAS, 2015, 16: 1130-1134. [22]Nie W, Wang Y, Yao K, et al. Serum angiotensin-converting enzyme 2 is an independent risk factor for in-hospital mortality following open surgical repair of ruptured abdominal aortic aneurysm[J]. Exp Ther Med, 2016, 12: 1412-1418. [23]Moran CS, Biros E, Krishna SM, et al. Resveratrol inhibits growth of experimental abdominal aortic aneurysm associated with upregulation of angiotensin-converting enzyme 2[J]. Arterioscler Thromb Vasc Biol, 2017, 37: 2195-2203. [24]Thatcher SE, Zhang X, Howatt DA, et al. Angiotensin-converting enzyme 2 decreases formation and severity of angiotensin Ⅱ-induced abdominal aortic aneurysms[J]. Arterioscler Thromb Vasc Biol, 2014, 34: 2617-2623. [25]Hao Q, Dong X, Chen X, et al. Angiotensin-converting enzyme 2 inhibits angiotensin Ⅱ-induced abdominal aortic aneurysms in mice[J]. Hum Gene Ther, 2018.doi:10.1089/hum.2016.144. [26]Zhou, X, Zhang P, Liang T, et al. Relationship between circulating levels of angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis and coronary heart disease[J]. Heart Vessels, 2019, 35: 153-161. [27]Anguiano L, Riera M, Pascual J, et al. Circulating angiotensin converting enzyme 2 activity as a biomarker of silent atherosclerosis in patients with chronic kidney disease[J]. Atherosclerosis, 2016, 253: 135-143. [28]Zhang YH, Zhang YH, Dong XF, et al. ACE2 and Ang-(1-7) protect endothelial cell function and prevent early atherosclerosis by inhibiting inflammatory response[J]. Inflam Res, 2015, 64: 253-260. [29]Stegbauer J, Thatcher SE, Yang G, et al. Mas receptor deficiency augments angiotensin Ⅱ-induced atherosclero-sis and aortic aneurysm ruptures in hypercholesterolemic male mice[J]. J Vasc Surg, 2019, 70: 1658-1668.e1651. [30]Lin Y, Zeng H, Gao L, et al. Hydrogen sulfide attenuates atherosclerosis in a partially ligated carotid artery mouse model via regulating angiotensin converting enzyme 2 expression[J]. Front Physiol, 2017, 8:782.doi:10.3389/fphys.2017.00782. [31]Pernomian L, do Prado AF, Gomes MS, et al. MAS receptors mediate vasoprotective and atheroprotective effects of candesartan upon the recovery of vascular angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis functionality[J]. Eur J Pharmacol, 2015, 764: 173-188. [32]Sahara M, Ikutomi M, Morita T, et al. Deletion of angiotensin-converting enzyme 2 promotes the development of atherosclerosis and arterial neointima formation[J]. Cardiovasc Res, 2014, 101: 236-246. [33]Chen Y, Wang X, Yang C, et al. Decreased circulating catestatin levels are associated with coronary artery disease: The emerging anti-inflammatory role[J]. Atherosclerosis, 2019, 281: 78-88. [34]Zhang YH, Hao QQ, Wang XY, et al. ACE2 activity was increased in atherosclerotic plaque by losartan: Possible relation to anti-atherosclerosis[J]. J Renin Angiotensin Aldosterone Sys, 2014, 16: 292-300. [35]Li S, Wang Z, Yang X, et al. Association between circulating angiotensin-converting enzyme 2 and cardiac remodeling in hypertensive patients[J]. Peptides, 2017, 90: 63-68. [36]Ramchand J, Patel SK, Kearney LG, et al. Plasma ACE2 activity predicts mortality in aortic stenosis and is associa-ted with severe myocardial fibrosis[J]. JACC Cardiovasc Imaging, 2019, 10.1016/j.jcmg.2019.09.005. [37]Úri K, Fagyas M, Kertész A, et al. Circulating ACE2 activity correlates with cardiovascular disease development[J]. J Renin Angiotensin Aldosterone Sys, 2016, 17.doi:10.1177/1470320316668435. [38]Katsi V, Maragkoudakis S, Marketou M, et al. The role of angiotensin-(1-7)/Mas axis and angiotensin type 2 receptors in the central nervous system in cardiovascular disease and therapeutics: a riddle to be solved[J]. Curr Vasc Pharmacol, 2019, 17: 319-325. [39]Fan J, Zou L, Cui K, et al. Atrial overexpression of angiotensin-converting enzyme 2 improves the canine rapid atrial pacing-induced structural and electrical remodeling. Fan, ACE2 improves atrial substrate remodeling[J]. Basic Res Cardiol, 2015, 110: 45.doi:10.1007/s00395-015-0499-0. [40]Sato T, Kadowaki A, Suzuki T, et al. Loss of apelin augments angiotensin Ⅱ-induced cardiac dysfunction and pathological remodeling[J]. Int J Mol Sci, 2019, 20.doi:10.3390/ijmsz0020239. [41]de Oliveira Sa G, Dos Santos Neves V, de Oliveira Fraga SR, et al. High-intensity interval training has beneficial effects on cardiac remodeling through local renin-angiotensin system modulation in mice fed high-fat or high-fructose diets[J]. Life Sci, 2017, 189: 8-17. [42]Sukumaran V, Tsuchimochi H, Tatsumi E, et al. Azilsartan ameliorates diabetic cardiomyopathy in young db/db mice through the modulation of ACE-2/ANG 1-7/Mas receptor cascade[J]. Biochem Pharmacol, 2017, 144: 90-99. [43]Joviano-Santos JV, Santos-Miranda A, Joca HC, et al. Diminazene aceturate (DIZE) has cellular and in vivo antiarrhythmic effects[J]. Clin Exp Pharmacol Physiol, 2020, 47: 213-219. [44]Badae NM, Naggar AS, Sayed SM. Is the cardioprotective effect of the ACE2 activator diminazene aceturate more potent than the ACE inhibitor enalapril on acute myocardial infarction in rats?[J]. Can J Physiol Pharmacol, 2019, 97: 638-646. [45]Castardeli C, Sartório CL, Pimentel EB, et al. The ACE 2 activator diminazene aceturate (DIZE) improves left ventricular diastolic dysfunction following myocardial infarction in rats[J]. Biomed Pharmacother Biomed Pharmacother, 2018, 107: 212-218. [46]Patel VB, Zhong JC, Grant MB, et al. Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure[J]. Circ Res, 2016, 118: 1313-1326. [47]Zhai CG, Xu YY, Tie YY, et al. DKK3 overexpression attenuates cardiac hypertrophy and fibrosis in an angiotensin-perfused animal model by regulating the ADAM17/ACE2 and GSK-3β/β-catenin pathways[J]. J Mol Cell Cardiol, 2018, 114: 243-252. [48]Zhang ZZ, Cheng YW, Jin HY, et al. The sirtuin 6 prevents angiotensin Ⅱ-mediated myocardial fibrosis and injury by targeting AMPK-ACE2 signaling[J]. Oncotarget, 2017, 8: 72302-72314. [49]Lai L, Chen J, Wang N, et al. miR-30e mediated cardioprotection of ACE2 in rats with Doxorubicin-induced heart failure through inhibiting cardiomyocytes autophagy[J]. Life Sci, 2017, 169: 69-75. [50]Qi YF, Zhang J, Wang L, et al. Angiotensin-converting enzyme 2 inhibits high-mobility group box 1 and attenuates cardiac dysfunction post-myocardial ischemia[J]. J Mol Med (Berlin, Germany), 2016. 94: 37-49. [51]Patel VB, Mori J, McLean BA, et al. ACE2 deficiency worsens epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity[J]. Diabetes, 2016, 65: 85-95. [52]Walters TE, Kalman JM, Patel SK, et al. Angiotensin converting enzyme 2 activity and human atrial fibrillation: increased plasma angiotensin converting enzyme 2 activity is associated with atrial fibrillation and more advanced left atrial structural remodelling[J]. Europace: Eur Pacing Arrhyth Cardiac Electrophysiol, 2017, 19: 1280-1287. [53]Coutinho DC, Monnerat-Cahli G, Ferreira AJ, et al. Activation of angiotensin-converting enzyme 2 improves cardiac electrical changes in ventricular repolarization in streptozotocin-induced hyperglycaemic rats[J]. Europace: Eur Pacing Arrhyth Cardiac Electrophysiol, 2014, 16: 1689-1696. [54]Hemnes AR, Rathinasabapathy A, Austin EA, et al. A potential therapeutic role for angiotensin-converting enzyme 2 in human pulmonary arterial hypertension[J]. Eur Respir J, 2018, 51.doi:10.1183/13993003.02638-2017. |
[1] | 唐丽鸿, 陈春玲. SphK/S1P在心血管疾病中的作用[J]. 基础医学与临床, 2024, 44(8): 1175-1179. |
[2] | 高源, 郑刚, 齐靖, 张凤. NLRP3炎性小体在心脏病发病中的作用研究进展[J]. 基础医学与临床, 2023, 43(7): 1162-1166. |
[3] | 杜丰禾, 刘暴. 血管周围脂肪组织炎性反应促进动脉粥样硬化作用机制的研究进展[J]. 基础医学与临床, 2023, 43(4): 685-689. |
[4] | 沈霞芬, 蔡强, 俞蔚, 许晓辉. 心血管疾病高危人群的影响因素及其关联分析[J]. 基础医学与临床, 2023, 43(11): 1655-1661. |
[5] | 马茜钰, 彭石, 张兆元, 张丹, 张锦. 盐皮质激素受体对心血管疾病影响的研究进展[J]. 基础医学与临床, 2022, 42(8): 1292-1296. |
[6] | 胡诗琪, 蓝彦琦, 吴寿岭, 王晓墨, 陈朔华, 汪国栋, 王丽. 肥胖及其变化对中国华北新发NAFLD成年男性患者心血管疾病发病风险的影响[J]. 基础医学与临床, 2022, 42(5): 788-794. |
[7] | 梁清, 陈丽红. 生物钟紊乱致心脏功能障碍的研究进展[J]. 基础医学与临床, 2022, 42(5): 799-803. |
[8] | 吴岳恒, 余细勇. 人工智能在心血管疾病研究和临床中的应用[J]. 基础医学与临床, 2022, 42(11): 1644-1649. |
[9] | 黄仙, 吴寿岭, 陈朔华, 孙园园, 张迪, 郭淑霞, 王丽. 全血铁和铜与心血管疾病关联的基于队列的病例对照研究[J]. 基础医学与临床, 2021, 41(5): 709-714. |
[10] | 袁玲, 聂卫, 王蕾, 王宏, 崔晓雪, 刘琳娜. 慢性肾脏病血管钙化大鼠并发心肌炎性反应[J]. 基础医学与临床, 2021, 41(2): 197-202. |
[11] | 时英, 郭永芳, 邓玉婷, 戴红艳, 管军. Salusin-β在心血管疾病中作用的研究进展[J]. 基础医学与临床, 2021, 41(2): 282-286. |
[12] | 冯冬萍, 商汉桥, 杨航, 张虎军, 张停, 杨梦溪, 屠强, 任景怡. 斑马鱼cetp基因敲除模型的建立及其肝脏转录组学分析[J]. 基础医学与临床, 2020, 40(7): 940-947. |
[13] | 宋绮蕊, 蔡军. 人工智能及机器学习在心血管疾病中的应用[J]. 基础医学与临床, 2020, 40(5): 707-710. |
[14] | 张静, 王肖枭, 周怡, 王雪, 顾开明, 叶迎春. 肠道菌群与疾病相关性的研究进展[J]. 基础医学与临床, 2020, 40(2): 243-247. |
[15] | 朱坤, 戴日蕾, 朱文婷, 李贞燕, 曹春梅. 细胞焦亡与心血管疾病研究进展[J]. 基础医学与临床, 2020, 40(12): 1711-1715. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 290
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 393
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备07012236号
网站版权 © 《基础医学与临床》编辑部