[1] Nagy LG, Merényi Z, Hegedüs B, et al. Novel phylogenetic methods are needed for understanding gene function in the era of mega-scale genome sequencing[J]. Nucleic Acids Res, 2020, 48: 2209-2219. [2] 方福德.有关“组”(-ome)和“组学”(-omics)的几个名词[J].基础医学与临床,2011,31(4):封2. [3] Funato H, Miyoshi C, Fujiyama T, et al. Forward-genetics analysis of sleep in randomly mutagenized mice[J]. Nature, 2016, 539: 378-383. [4] Nogales A, Martínez-Sobrido L. Reverse genetics approaches for the development of influenza vaccines[J]. Int J Mol Sci, 2017, 18: 20. doi: 10.3390/ijms18010020. [5] Gao B, Guo J, She C, et al. Mutations in IHH, encoding Indian hedgehog, cause brachydactyly type A-1[J]. Nat Genet, 2001, 28: 386-388. [6] Buniello A, MacArthur JAL, Cerezo M, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019[J]. Nucleic Acids Res, 2019, 47: D1005-D1012. [7] Luo C, Wang F, Ren X, et al. Identification of a molecular signaling gene-gene regulatory network between GWAS susceptibility genes ADTRP and MIA3/TANGO1 for coronary artery disease[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863: 1640-1653. [8] Speakman JR, Loos RJF, O'Rahilly S, et al. GWAS for BMI: a treasure trove of fundamental insights into the genetic basis of obesity[J]. Int J Obes (Lond), 2018, 42: 1524-1531. [9] Bovijn J, Jackson L, Censin J, et al. GWAS identifies risk locus for erectile dysfunction and implicates hypothalamic neurobiology and diabetes in etiology[J]. Am J Hum Genet, 2019, 104: 157-163. [10] Slotta-Huspenina J, Drecoll E, Feith M, et al. MicroRNA expression profiling for the prediction of resistance to neoadjuvant radiochemotherapy in squamous cell carcinoma of the esophagus[J]. J Transl Med, 2018, 16: 1-9. [11] Ruggles KV, Krug K, Wang X, et al. Methods, tools and current perspectives in proteogenomics[J]. Mol Cell Proteomics, 2017, 16: 959-981. [12] Liu X, Wu J, Zhang D, et al. Identification of potential key genes associated with the pathogenesis and prognosis of gastric cancer based on integrated bioinformatics analysis[J]. Front Genet, 2018, 9: 265. doi: 10.3389/fgene.2018.00265. [13] Wong FS, Karttunen J, Dumont C, et al. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library[J]. Nat Med, 1999;5:1026-1031. [14] Mamta B, Rajam MV. RNAi technology: a new platform for crop pest control[J]. Physiol Mol Biol Plants, 2017, 23: 487-501. [15] Mohr SE, Smith JA, Shamu CE, et al. RNAi screening comes of age: improved techniques and complementary approaches[J]. Nat Rev Mol Cell Biol, 2014, 15: 591-600. [16] Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9[J]. Nat Rev Genet, 2015, 16: 299-311. [17] Wade M. High-throughput silencing using the CRISPR-Cas9 system: a review of the benefits and challenges[J]. J Biomol Screen, 2015, 20: 1027-1039. [18] Weber J, de la Rosa J, Grove CS, et al. PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice[J]. Nat Commun, 2019, 10: 1-16. [19] Nielsen J. Yeast systems biology: model organism and cell factory[J]. Biotechnol J, 2019,14:e1800421. doi: 10.1002/biot.201800421. [20] Beckmann PJ, Largaespada DA. Transposon insertion mutagenesis in mice for modeling human cancers: critical insights gained and new opportunities[J]. Int J Mol Sci, 2020,21:1172. doi: 10.3390/ijms21031172. [21] Ranzani M, Annunziato S, Adams DJ, et al. Cancer gene discovery: exploiting insertional mutagenesis[J]. Mol Cancer Res, 2013, 11: 1141-1158. [22] Zwaal RR, Broeks A, van Meurs J, et al. Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank[J]. Proc Natl Acad Sci U S A, 1993, 90: 7431-7435. [23] Thibault ST, Singer MA, Miyazaki WY, et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac[J]. Nat Genet, 2004, 36: 283-287. [24] Rad R, Rad L, Wang W, et al. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice[J]. Science, 2010, 330: 1104-1107. [25] Weber J, de la Rosa J, Grove CS, et al. PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice[J]. Nat commun, 2019, 10: 1-16. [26] 由磊. 全基因组筛选胰腺癌耐药相关基因[D].北京协和医学院,2010. [27] 常德. 全基因组筛选和鉴定ARPC1B基因在胰腺癌转移中的作用和机理[D].北京协和医学院,2011. |