Basic & Clinical Medicine ›› 2022, Vol. 42 ›› Issue (10): 1591-1595.doi: 10.16352/j.issn.1001-6325.2022.10.1591
• Mini Reviews • Previous Articles Next Articles
PAN Ming-min, WANG Qi-yang, YANG Li-ping*
Received:
2021-04-25
Revised:
2021-10-15
Online:
2022-10-05
Published:
2022-09-23
Contact:
* bioylp@126.com
CLC Number:
PAN Ming-min, WANG Qi-yang, YANG Li-ping. Progress in research on m6A modification of FTO mediated-RNA and development[J]. Basic & Clinical Medicine, 2022, 42(10): 1591-1595.
[1] | Peters T, Ausmeier K, Rüther U. Cloning of Fatso (Fto), a novel gene deleted by the Fused toes (Ft) mouse mutation[J]. Mamm Genome, 1999, 10: 983-986. |
[2] | Peters T, Ausmeier K, Dildrop R, et al. The mouse Fused toes (Ft) mutation is the result of a 1.6-Mb deletion including the entire Iroquois B gene cluster[J]. Mamm Genome, 2002, 13: 186-188. |
[3] | Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity[J]. Science, 2007, 316: 889-894. |
[4] | Gerken T, Girard CA, Tung YC, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase[J]. Science, 2007, 318: 1469-1472. |
[5] | Han Z, Niu T, Chang J, et al. Crystal structure of the FTO protein reveals basis for its substrate specificity[J]. Nature, 2010, 464: 1205-1209. |
[6] | Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7: 885-887. |
[7] | Niu Y, Lin Z, Wan A, et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3[J]. Mol Cancer, 2019, 18: 46.doi: 10.1186/s12943-019-1004-4. |
[8] | Zhang H, Shi X, Huang T, et al. Dynamic landscape and evolution of m6A methylation in human[J]. Nucleic Acids Res, 2020, 48: 6251-6264. |
[9] | Ries RJ, Zaccara S, Klein P, et al. m(6)A enhances the phase separation potential of mRNA[J]. Nature, 2019, 571: 424-428. |
[10] | Huang Y, Su R, Sheng Y, et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia[J]. Cancer Cell, 2019, 35: 677-691. |
[11] | Ferenc K, Pilžys T, Garbicz D, et al. Intracellular and tissue specific expression of FTO protein in pig: changes with age, energy intake and metabolic status[J]. Sci Rep, 2020, 10: 13029.doi: 10.1038/s41598-020-69856-5. |
[12] | Wang X, Wu R, Liu Y, et al. m(6)A mRNA methylation controls autophagy and adipogenesis by target-ing Atg5 and Atg7[J]. Autophagy, 2020, 16: 1221-1235. |
[13] | Wang L, Song C, Wang N, et al. NADP modulates RNA m(6)A methylation and adipogenesis via enhancing FTO activity[J]. Nat Chem Biol, 2020, 16: 1394-1402. |
[14] | Zhao X, Yang Y, Sun BF, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis[J]. Cell Res, 2014, 24: 1403-1419. |
[15] | Bassols J, Prats-Puig A, Vazquez-Ruiz M, et al. Placental FTO expression relates to fetal growth[J]. Int J Obes (Lond), 2010, 34: 1365-1370. |
[16] | Barton SJ, Mosquera M, Cleal JK, et al. Relation of FTO gene variants to fetal growth trajectories: findings from the Southampton Women's survey[J]. Placenta, 2016, 38: 100-106. |
[17] | Song T, Lu J, Deng Z, et al. Maternal obesity aggravates the abnormality of porcine placenta by increasing N6-methyladenosine[J]. Int J Obes (Lond), 2018,42:1812-1820. |
[18] | Du T, Li G, Yang J, et al. RNA demethylase Alkbh5 is widely expressed in neurons and decreased during brain development[J]. Brain Res Bull, 2020, 163: 150-159. |
[19] | Xue A, Huang Y, Li M, et al. Comprehensive analysis of differential m6A RNA methylomes in the hippocampus of cocaine-conditioned mice[J]. Mol Neurobiol, 2021,58:37593768. |
[20] | Li L, Zang L, Zhang F, et al. Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis[J]. Hum Mol Genet, 2017, 26: 2398-2411. |
[21] | Engel M, Eggert C, Kaplick PM, et al. The role of m(6)A/m-RNA methylation in stress response regulation[J]. Neuron, 2018, 99: 389-403. |
[22] | Walters BJ, Mercaldo V, Gillon CJ, et al. The role of the RNA demethylase FTO (fat mass and obesity-associated) and mRNA methylation in hippocampal memory formation[J]. 2017, 42: 1502-1510. |
[23] | Selberg S, Yu LY, Bondarenko O, et al. Small-molecule inhibitors of the RNA m6A demethylases FTO potently support the survival of dopamine neurons[J]. Int J Mol Sci, 2021, 22: 4537.doi: 10.3390/ijms22094537. |
[24] | Chen X, Yu C, Guo M, et al. Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death[J]. ACS Chem Neurosci, 2019, 10: 2355-2363. |
[25] | Yu J, Chen M, Huang H, et al. Dynamic m6A modification regulates local translation of mRNA in axons[J]. Nucleic Acids Res, 2018, 46: 1412-1423. |
[1] | GAO Yidan, JIANG Xuehan, ZHANG Hong, YANG Peiran. Development of novel therapies targeting at dysregulated signaling pathways in pulmonary arterial hypertension [J]. Basic & Clinical Medicine, 2024, 44(8): 1088-1093. |
[2] | LIU Jinghua, LU Lin. Genetic and molecular mechanism changes of adrenocortical carcinoma [J]. Basic & Clinical Medicine, 2024, 44(6): 748-752. |
[3] | Growth and Development and Gonadal Diseases Committee of Chinese Aging Well Association. Consensus on endocrine management for children and adolescents with craniopharyngioma surgeries [J]. Basic & Clinical Medicine, 2024, 44(5): 585-598. |
[4] | LU Huiying, WANG Jianguo. Downregulation of demethylase FTO inhibits proliferation of human liver cancer cell line HepG2 [J]. Basic & Clinical Medicine, 2024, 44(2): 185-191. |
[5] | HE Jiayin, YANG Jiabin, CHEN Zhongyang, MA Yanni, YU Jia. Enolase1 regulates the self-renewal ability of human embryonic stem cells by influencing mRNA localization [J]. Basic & Clinical Medicine, 2023, 43(6): 867-874. |
[6] | DAI Ziyi, MA Lulu, HUANG Yuguang. Research progress on the effects of early anesthesia exposure on neurodevelopment in children [J]. Basic & Clinical Medicine, 2023, 43(6): 1012-1015. |
[7] | GAO Xin, YU Yongbo, WANG Haicun, JIANG Xingming, WANG Zhidong. Research progress on regulatory mechanisms of circular RNA nuclear receptor interacting protein 1 in tumor occurrence and development [J]. Basic & Clinical Medicine, 2023, 43(5): 827-832. |
[8] | ZHANG Qiang, SU Wenhui. Advances in research on RNA N-6-methyladenosine(m6A) modification related enzymes in mammalian spermatogenesis [J]. Basic & Clinical Medicine, 2023, 43(4): 524-531. |
[9] | Cidanwangjiu, Tudan'awang, YANG Meijie, Puqiongqiongda, WANG Fengdan, PAN Hui, JIN Zhengyu. Influence of high altitude on bone age development of children and adolescents [J]. Basic & Clinical Medicine, 2023, 43(4): 636-640. |
[10] | CHEN Zhong-yang, MA Yan-ni, YU Jia. Single-cell RNA sequencing based analysis depicts the development map of human early embryonic erythrocytes [J]. Basic & Clinical Medicine, 2022, 42(5): 776-781. |
[11] | CHEN Kang, CHENG Fan. Research progress of transcription factor AP-2 γ in malignant tumors [J]. Basic & Clinical Medicine, 2022, 42(12): 1955-1959. |
[12] | WANG Feng-dan, Cidanwangjiu, JIAO Yang, PAN Hui, YIN Wu, JIN Zheng-yu. Use of artificial intelligence in bone age assessment [J]. Basic & Clinical Medicine, 2022, 42(11): 1776-1780. |
[13] | ZHANG Yan, ZHU Meng-wen, LIU Tong, YANG Sheng, LIANG Ge-yu. Research progress on the role of N6-methyladenosine (m6A) RNA modification in reproductive system diseases [J]. Basic & Clinical Medicine, 2021, 41(9): 1347-1351. |
[14] | YUAN Qing, LI Xu, RUAN Xia, CUI Xu-lei, TAN Gang, HUANG Yu-guang. Investigation of study, career development and mental status of anesthesia postgraduate during the COVID-19 pandemic [J]. Basic & Clinical Medicine, 2021, 41(7): 1081-1083. |
[15] | WANG Hai-yu, XIAO Yi, HUANG Yue. Isolation and identification of tetraploid trophoblast stem cells [J]. Basic & Clinical Medicine, 2021, 41(7): 975-981. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 639
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 367
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||