[1] Raimann JG, Riella MC, Levin NW. International Society of Nephrology's 0by25 initiative (zero preventable deaths from acute kidney injury by 2025): focus on diagnosis of acute kidney injury in low-income countries[J]. Clin Kidney J, 2018, 11:12-19. [2] Dupont MA, Humbert C, Huber C, et al. Human IFT52 mutations uncover a novel role for the protein in microtubule dynamics and centrosome cohesion[J]. Hum Mol Genet, 2019, 28: 2720-2737. [3] Xu W, Jin M, Huang W, et al. Apical PtdIns(4,5)P2 is required for ciliogenesis and suppression of polycystic kidney disease[J]. FASEB J, 2018, 33: 2848-2857. [4] Wen X, Cui L, Morrisroe S, et al. A zebrafish model of infection-associated acute kidney injury[J]. Am J Physiol Renal Physiol, 2018, 315: F291-F299. [5] Wang X, Giusti A, Ny A, et al. Nephrotoxic effects in zebrafish after prolonged exposure to aristolochic Acid[J]. Toxins (Basel), 2020, 12. doi: 10.3390/toxins12040217. [6] Brilli Skvarca L, Han HI, Espiritu EB, et al. Enhancing regeneration after acute kidney injury by promoting cellular dedifferentiation in zebrafish[J]. Dis Model Mech, 2019, 12. doi: 10.1242/dmm.037390. [7] Chambers JM, Poureetezadi SJ, Addiego A, et al. ppargc1a controls nephron segmentation during zebrafish embryonic kidney ontogeny[J]. Elife, 2018, 7. doi: 10.7554/eLife.40266. [8] Kato Y, Tonomura Y, Hanafusa H, et al. Adult zebrafish model for screening drug-induced kidney injury[J]. Toxicol Sci, 2020, 174: 241-253. [9] Hentschel DM, Park KM, Cilenti L, et al. Acute renal failure in zebrafish: a novel system to study a complex disease[J]. Am J Physiol Renal Physiol, 2005, 288: F923-F929. [10] Hegde R, Srinivasula SM, Zhang Z, et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction[J]. J Biol Chem,2001, 277: 432-438. [11] Hellman NE, Liu Y, Merkel E, et al. The zebrafish foxj1a transcription factor regulates cilia function in response to injury and epithelial stretch[J]. Proc Natl Acad Sci U S A, 2010, 107: 18499-18504. [12] Berg D, Gerlach H. Recent advances in understanding and managing sepsis[J]. F1000Res, 2018, 7. doi: 10.12688/f1000research.15758.1. [13] Wen X, Cui L, Morrisroe S, et al. A zebrafish model of infection-associated acute kidney injury[J]. Am J Physiol Renal Physiol, 2018, 315: F291-F299. [14] Johnson CS, Holzemer NF, Wingert RA. Laser ablation of the zebrafish pronephros to study renal epithelial regeneration[J]. J Vis Exp,2011. doi: 10.3791/2845. [15] de Groh ED, Swanhart LM, Cosentino CC, et al. Inhibition of histone deacetylase expands the renal progenitor cell population[J]. J Am Soc Nephrol, 2010, 21: 794-802. [16] Mccampbell KK, Springer KN, Wingert RA. Atlas of cellular dynamics during zebrafish adult kidney regeneration[J]. Stem Cells Int, 2015,2015: 1-19. [17] Elmonem MA, Berlingerio SP, Heuvel LPWJ, et al. Genetic renal diseases: the emerging role of zebrafish models[J]. Cells, 2018, 7: 130. doi: 10.3390/cells7090130. [18] Han HA, Pang JKS, Soh B. Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing[J]. J Mol Med (Berl), 2020. doi: 10.1007/s00109-020-01893-z. [19] Wu N, Liu B, Du H, et al. The progress of CRISPR/Cas9-mediated gene editing in generating mouse/zebrafish models of human skeletal diseases[J]. Comput Struct Biotechnol J, 2019, 17: 954-962. [20] Carter SP, Moran AL, Matallanas D, et al. Genetic deletion of zebrafish Rab28 causes defective outer segment shedding, but not retinal degeneration[J]. Front Cell Dev Biol, 2020, 8. doi: 10.3389/fcell.2020.00136. [21] Zoodsma JD, Chan K, Bhandiwad AA, et al. A model to study NMDA receptors in early nervous system develop-ment[J]. J Neurosci,2020,40: 3019-3025. |