[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018,68:7-30. [2] Li FL, Liu JP, Bao RX, et al. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis[J]. Nat Commun, 2018,9:508. doi:10.1038/s41467-018-02950-5. [3] Lin DH, Correia AR, Cai SW, et al. Structural and functional analysis of mRNA export regulation by the nuclear pore complex[J]. Nat Commun, 2018,9:2319. doi:10.1038/s41467-018-04459-3. [4 ] Bui KH, von Appen A, DiGuilio AL, et al. Integrated structural analysis of the human nuclear pore complex scaffold[J]. Cell, 2013,155:1233-1243. [5] Zhou M, Liu H, Xu X, et al. Identification of nuclear localization signal that governs nuclear import of BRD7 and its essential roles in inhibiting cell cycle progression[J]. J Cell Biochem, 2006,98:920-930. [6] Xu D, Grishin NV, Chook YM. NESdb: a database of NES-containing CRM1 cargoes[J]. Mol Biol Cell, 2012,23:3673-3676. [7] Tavolieri MV, Droppelmann CA, Campos-Melo D,et al. A novel overlapping NLS/NES region within the PH domain of Rho guanine nucleotide exchange factor(RGNEF) regulates its nuclear-cytoplasmic localization[J]. Eur J Cell Biol, 2019, 98: 27-35. [8] Chook YM, Blobel G. Karyopherins and nuclear import[J]. Curr Opin Struct Biol, 2001,11:703-715. [9] Kapinos LE, Huang B, Rencurel C, et al. Karyopherins regulate nuclear pore complex barrier and transport function[J]. J Cell Biol, 2017,216:3609-3624. [10] Barbato S, Kapinos LE, Rencurel C, et al. Karyopherin enrichment at the nuclear pore complex attenuates Ran permeability[J]. J Cell Sci, 2020,133.doi:10.1242/jcs.238121. [11] Kau TR, Way JC, Silver PA. Nuclear transport and cancer: from mechanism to intervention[J]. Nat Rev Cancer, 2004,4:106-117. [12] Plafker K, Macara IG. Facilitated nucleocytoplasmic shuttling of the Ran binding protein RanBP1[J]. Mol Cell Biol, 2000,20:3510-3521. [13] Gandhi UH, Senapedis W, Baloglu E, et al. Clinical implications of targeting XPO1-mediated nuclear export in multiple myeloma[J]. Clin Lymphoma Myeloma Leuk, 2018,18:335-345. [14] Rahmani K, Dean DA. Leptomycin B alters the subcel-lular distribution of CRM1 (Exportin 1)[J]. Biochem Biophys Res Commun, 2017,488:253-258. [15] Stelma T, Leaner VD. KPNB1-mediated nuclear import is required for motility and inflammatory transcription factor activity in cervical cancer cells[J]. Oncotarget, 2017,8:32833-32847. [16] Cooper JP, Reynolds CP, Cho H, et al. Clinical development of fenretinide as an antineoplastic drug: pharm-acology perspectives[J]. Exp Biol Med (Maywood), 2017,242:1178-1184. [17] Sorrentino G, Ruggeri N, Specchia V, et al. Metabolic control of YAP and TAZ by the mevalonate pathway[J]. Nat Cell Biol, 2014,16:357-366. [18] Cyert MS. Regulation of nuclear localization during Signaling[J]. J Biol Chem, 276:20805-20808. [19] de Polo A, Luo Z, Gerarduzzi C, et al. AXL receptor signalling suppresses p53 in melanoma through stabilization of the MDMX-MDM2 complex[J]. J Mol Cell Biol, 2017,9:154-165. [20] Liu H, Zhang H, Wu X, et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis[J]. Nature, 2018,563:131-136. [21] Kim J, McMillan E, Kim HS, et al. XPO1-dependent nuclear export is a druggable vulnerability in kras-mutant lung cancer[J]. Nature, 2016,538:114-117. [22] Wang J, Lu Q, Cai J, et al. Nestin regulates cellular redox homeostasis in lung cancer through the keap1-nrf2 feedback loop[J]. Nat Commun, 2019,10:5043. doi:10.1038/s41467-019-12925-9. [23] Lee PC, Fang YF, Yamaguchi H, et al. Targeting PKCδ as a therapeutic strategy against heterogeneous mechanisms of EGFR inhibitor resistance in EGFR-mutant lung cancer[J]. Cancer Cell, 2018,34:954-969. |