[1] Rolle K. miRNA Multiplayers in glioma. From bench to bedside[J]. Acta Biochim Pol, 2015, 62: 353-365. [2] Mariagrazia R, Maria C, Letteria M, et al. ROS and brain gliomas: an overview of potential and innovative therapeutic strategies[J]. Int J Mol Sci, 2016, 17:984-998. [3] 刘臣,李根华, 李想, 等. 脑胶质瘤综合治疗的研究进展[J]. 中国微侵袭神经外科杂志, 2019, 24: 42-45. [4] Chaul-Barbosa C, Marques DF. How we treat recurrent glioblastoma today and current evidence[J]. Curr Oncol Rep, 2019, 21: 94-101. [5] Wang GB, Liu JH, Hu J, et al. miR-21 enhanced glioma cells resistance to carmustine via decreasing Spry2 expression[J]. Eur Rev Med Pharmacol Sci, 2017, 21: 5065-5071. [6] Liu L, Cui S, Zhang R, et al. miR-421 inhibits the malignant phenotype in glioma by directly targeting MEF2D[J]. Am J Cancer Res, 2017, 7: 857-868. [7] Wu M, Li X, Liu Q, et al. miR-526b-3p serves as a prognostic factor and regulates the proliferation, invasion, and migration of glioma through targeting WEE1[J]. Cancer Manag Res, 2019, 11: 3099-3110. [8] Dai S, Wang X, Li X, et al. microRNA-139-5p acts as a tumor suppressor by targeting ELTD1 and regulating cell cycle in glioblastoma multiforme[J]. Biochem Biophys Res Commun, 2015, 467: 204-210. [9] Wang Y, Branicky R, NoëA, et al. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling[J]. J Cell Biol, 2018, 217: 1915-1928. [10] Veal E, Jackson T, Latimer H. Role/s of ‘Antioxidant’ Enzymes in Ageing[J]. Subcell Biochem, 2018, 90: 425-450. [11] Reczek CR, Chandel NS. The two faces of reactive oxygen species in cancer[J]. Ann Rev Cancer Biol, 2017, 1: 79-98. [12] Morry J, Ngamcherdtrakul W, Yantasee W. Oxidative stress in cancer and fibrosis: opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles[J]. Redox Biol, 2017, 11: 240-253. [13] Sanchez-Perez Y, Soto-Reyes E, Garcia-Cuellar CM, et al. Role of epigenetics and oxidative stress in gliomagenesis[J]. CNS Neurol Disord Drug Targets, 2017, 16: 1090-1098. [14] Aleli SR, Salazar-Ramiro A, Ramírez-Ortega D, et al. Role of Redox status in development of glioblastoma[J]. Front Immunol, 2016, 7: 156-170. [15] Chiu WT, Shen SC, Chow JM, et al. Contribution of reactive oxygen species to migration/invasion of human glioblastoma cells U87 via ERK-dependent COX-2/PGE(2) activation[J]. Neurobiol. Dis, 2010, 37: 118-129. [16] Li SZ, Hu YY, Zhao J, et al. microRNA-34a induces apoptosis in the human glioma cell line, A172, through enhanced ROS production and NOX2 expression[J].Biochem Biophys Res Commun, 2014, 444: 6-12. [17] Tang H, Bian Y, Tu C, et al. The miR-183/96/182 cluster regulates oxidative apoptosis and sensitizes cells to chemotherapy in gliomas[J].Curr Cancer Drug Targets, 2013, 13: 221-231. [18] Lei Q, Liu X, Fu H, et al. miR-101 reverses hypomethylation of the PRDM16 promoter to disrupt mitochondrial function in astrocytoma cells[J]. Oncotarget, 2016, 7: 5007-5022. [19] Yang L, Mu Y, Cui H, et al. MiR-9-3p augments apoptosis induced by H2O2 through down regulation of Herpud1 in glioma[J]. PLoS One, 2017, 12:1-14. [20] 王晓玫, 张石芬, 成志强, 等. 上调microRNA-383对人髓母细胞瘤D341细胞系中PRDX3表达的影响[J]. 临床与实验病理学杂志, 2012, 28: 422-428. [21] 王少增, 高梅兰, 侯俊环. miR383调控PRDX3表达及对人髓母细胞瘤增殖和凋亡影响的研究[J]. 标记免疫分析与临床, 2019, 26: 139-142. [22] Yang W, Shen Y, Wei J, et al. microRNA-153/Nrf-2/GPx1 pathway regulates radiosensitivity and stemness of glioma stem cells via reactive oxygen species[J]. Oncotarget, 2015, 6: 22006-22027. [23] Yang W, Wei J, Guo T, et al. Knockdown of miR-210 decreases hypoxic glioma stem cells stemness and radioresistance[J].Exp Cell Res, 2014, 326: 22-35. [24] Yang L, Yu G, Wang C, et al. microRNA-128a, BMI1 polycomb ring finger oncogene, and reactive oxygen species inhibit the growth of U-87 MG glioblastoma cells following exposure to X-ray radiation[J]. Mol Med Rep, 2015, 12: 6247-6254. [25] Sato A, Okada M, Shibuya K, et al. Pivotal role for ROS activation of p38 MAPK in the control of differentiation and tumor-initiating capacity of glioma-initiating cells[J]. Stem Cell Res, 2014, 12: 119-131. [26] Ye L, Yu G, Wang C, et al. microRNA-128a, BMI1 polycomb ring finger oncogene, and reactive oxygen species inhibit the growth of U-87 MG glioblastoma cells following exposure to X-ray radiation[J]. Mol Med Rep, 2015, 12: 6247-6254. [27] Kwon JE, Kim BY, Kwak SY, et al. Ionizing radiation-inducible microRNA miR-193a-3p induces apoptosis by;directly targeting Mcl-1[J]. Apoptosis, 2013, 18: 896-909. [28] Liu Q, Zou R, Zhou R, et al. miR-155 regulates glioma cells invasion and chemosensitivity by p38 isforms in vitro[J]. J Cell Biochem, 2015, 116: 1213-1221. |