[1]Johnson KW, Torres Soto J, Glicksberg BS, et al.Artificial intelligence in cardiology[J].J Am Coll Cardiol,2018,71:2668-2679. [2]Shameer K, Johnson KW, Glicksberg BS, et al.Machine learning in cardiovascular medicine: are we there yet?[J].Heart,2018,104:1156-1164. [3]Sengupta PP, Shrestha S.Machine learning for data-driven discovery: the rise and relevance[J].JACC Cardiovasc Imaging,2019,12:690-692. [4]Lancaster MC, Salem Omar AM, Narula S, et al.Phenotypic clustering of left ventricular diastolic function parameters: patterns and prognostic relevance[J].JACC Cardiovasc Imaging,2019,12:1149-1161. [5]Gandhi S, Mosleh W, Shen J, et al.Automation, machine learning, and artificial intelligence in echocardiography: A brave new world[J].Echocardiography,2018,35:1402-1418. [6]Balakumar P, Maung UK,Jagadeesh G.Prevalence and prevention of cardiovascular disease and diabetes mellitus[J].Pharmacol Res,2016,113:600-609. [7]Johnson KW, Shameer K, Glicksberg BS, et al.Enabling precision cardiology through multiscale biology and systems medicine[J].JACC Basic Transl Sci,2017,2:311-327. [8]Antman EM,Loscalzo J.Precision medicine in cardiology[J].Nat Rev Cardiol,2016,13:591-602. [9]LeCun YBY, Hinton G.Deep learning[J].Nature,2015,521:436-444. [10]Mallya SOM, Srivastava N, Arai T,et al.Effectiveness of lstms in predicting congestive heart failure onset[EB/OL].Available at: https://arxiv.org/abs/1902.02443. Accessed August 11, 2019. [11]Diller GP, Kempny A, Babu-Narayan SV, et al.Machine learning algorithms estimating prognosis and guiding therapy in adult congenital heart disease: data from a single tertiary centre including 10 019 patients[J].Eur Heart J,2019,40:1069-1077. [12]Betancur J, Commandeur F, Motlagh M, et al.Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study[J].JACC Cardiovasc Imaging,2018,11:1654-1663. [13]Motwani M, Dey D, Berman DS, et al.Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis[J].Eur Heart J,2017,38:500-507. [14]Allyn J, Allou N, Augustin P, et al.A comparison of a machine learning model with euroSCORE II in predicting mortality after elective cardiac surgery: a decision curve analysis[J].PLoS One,2017,12.doi: 10.1371/journal.pone.0169772. [15]Bai W, Sinclair M, Tarroni G, et al.Automated cardiovascular magnetic resonance image analysis with fully convolutional networks[J].J Cardiovasc Magn Reson,2018,20:65. [16]Zhang J, Gajjala S, Agrawal P, et al. Fully automated echocardiogram interpretation in clinical practice[J].Circulation,2018,138:1623-1635. [17]Zreik M, Lessmann N, van Hamersvelt RW, et al.Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis[J].Med Image Anal,2018,44:72-85. [18]Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al.An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction[J].Lancet,2019,394:861-867. [19]Tison GH, Sanchez JM, Ballinger B, et al.Passive detection of atrial fibrillation using a commercially available smartwatch[J].JAMA Cardiol,2018,3:409-416. [20]Shah SJ, Katz DH, Selvaraj S, et al.Phenomapping for novel classification of heart failure with preserved ejection fraction[J].Circulation,2015,131:269-279. [21]Yang DY, Nie ZQ, Liao LZ, et al.Phenomapping of subgroups in hypertensive patients using unsupervised data-driven cluster analysis: An exploratory study of the SPRINT trial[J].Eur J Prev Cardiol,2019,26:1693-1706. |